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Eigenmode Analysis of Optical Waveguides by a
Yee-Mesh-Based Imaginary-Distance Propagation
Method for an Arbitrary Dielectric Interface
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Abstract—A modified finite-difference (FD) formulaforanarbi-  rated into the imaginary-distance scheme. Another is the ef-
trary dielectric interface is applied to an imaginary-distance prop-  fective-dielectric-constant technique (EDCT) [7], [9]-[12], in
agation method based on Yee's mesh. To confirm the validity of the \yhich permittivities along the stepped edges of Yee’s mesh are
modified method, we first analyze the eigenmode of a step-index .. - .
circular fiber. A reduction in a discretization error is demonstrated estimated by Va“o!JS averaging procedurgs. In contras_t to the
in the evaluation of the field profile. Calculations of the normalized ~ contour-path technique, the EDCT can be incorporated into the
propagation constant show that the convergence rate of the modi- imaginary-distance scheme without difficulties [5].
fied FD formula is faster than that of traditional techniques and is Although the EDCT appears to improve the overall accuracy
comparable to that of a body-of-revolution technique. Asafurther 191 113] the use of the conventional FD formula results in slow
application, we analyze the eigenmodes of sloped-side rib guides. : . .
These data agree well with previously published data. convergence as a funcnon of transverse mesh size. Thls is be-

cause the conventional FD formula assumes the continuity of
the field at a dielectric interface. In practice, the field and its
derivative are often discontinuous at the interface. To exactly
evaluate the field discontinuity, we have to take into account the
boundary conditions.
. INTRODUCTION Recently, a modified FD formula, which is constructed by

HE KNOWLEDGE of the eigenmode in an optical wavefombining the boundary conditions and one-sided difference
T guide is of fundamental importance in the design of ph&@Perators, has been proposed for the FDTD algorithm [14]-[17].
tonic integrated circuits. To date, many methods have been ptg¥as demonstrated that the numerical errors caused by the tra-
posed for this important issue [1]-[4]. One of them is an imagqjjtional techniques are reduced in the analysis of scattering by
nary-distance propagation method [2] based on Yee’s mesh [@]9rating coupler [14] and by a dielectric cylinder [15]-[17].

Index Terms—Dielectric waveguides, electromagnetic fields, fi-
nite-difference methods, Maxwell equations, numerical analysis,
optical waveguides.

[5]. The use of Yee's mesh has the advantage that the obtaifitVever, no attempt has been made for the eigenmode analysis
eigenmode fields can directly be utilized for the finite-differencef an optical waveguide except for our preliminary report [18].
time-domain (FDTD) analysis [6]. In this paper, we apply the modified FD formula [16], [17]

In the FDTD method, the FD equations are conventionall§p the imaginary-distance propagation method based on Yee's
obtained by discretizing Maxwell's equations with the use ¢fesh and show the effectiveness of the modified method in the
a uniform orthogonal Yee mesh [7]. The space derivatives 8deénmode analysis of an optical waveguide with an arbitrary
Maxwell’'s equations are approximated by central-differendielectric interface. Furthermore, a body-of-revolution (BOR)
operators. It is well known that the conventional FD formulf/]imaginary-distance propagation method is newly derived for

based on the central-difference operators induces a discret@&omparative _StU(_jY- 3
tion error when a staircase approximation is introduced toAfter the derivation of the modified and BOR methods, we

describe an arbitrary dielectric interface. first analyze a step-index circular fiber, since the exact field pro-
To reduce the discretization error, researchers have deJBf and propagation constant are available. Calculations of the
oped some techniques [7]-[12]. One is the contour-path tedig/d profiles show that the discretization error is substantially
nique [7]' [8], in which space cells local to a dielectric interfeduced by Vi'rtue of the m0d|f|ed FD formulg. In the evaluation
face are deformed to conform with the interface position ardi the normalized propagation constant against transverse mesh
the FD equations for the fields adjacent to the interface are déz€, the modified FD formula also achieves faster convergence
rived on the basis of Faraday’s and Ampere’s laws. Unfort{f)an the staircase approximation and the typical EDCT [12]. It

nately, the derived FD equations cannot naturally be incorpig_worth_mgntion.ing that the results of the modified method al-
most coincide with those of the BOR method.

We next analyze the eigenmodes of sloped-side rib guides
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Il. FORMULATION Hy (k—1/2,0,m+1/2)
. . . , 1
A. Imaginary-Distance Propagation Method Based on Yee's _ : x [(14 7Bt Az/2
Mesh 1- JﬂrefAZ/z [( ’ / )
We summarize the formulation of the imaginary-distance X Hy, (k-1/2,0,m-1/2)
propagation method based on Yee's mesh, following Lee’s pro- + Azby . (k—1/2,0,m)
cedure [4]. Consider a linear lossless medium with permittivity — jkoAzer (k—1/2,0)Ex, (k—1/2, Lm)]
e and permeability,. The formulation begins with Maxwell’'s (10)
equations
E. (¢, mt1/2)
OH 1
VxE=—pu— 1 = 14 5Bt Az/2)€r (1
F at ( ) (1 _ jﬂrefAz/2>6r,(k7Z) X [( +]/ f 7/ )6 ,(k,[)
VXH=¢ a_g (2) X Ez, (k,,m—1/2) — Azb,
ot Aer, ke, 0)Ea, (k, 0,m) }
where€ andHM are the electric- and magnetic-field vectors, re- — Azby{er (1,0 Ey, (k. 0,m)}]
spectively€ andH are normalized so that their magnitudes may (11)

be of the same order, i.&,= /;io E andH = ,/e; H. Substi-

tuting the set of normalized fields into (1) and (2), we get z, <k—1/271—11/2: m+1)

__ = % [(1+ jBretAz/2

\V )(E:_&B_H (3) (I_ijrefAz/Z) [( ! / )

co Ot X H, (k—1/2,6—1/2,m)
_ . OE — Az6,Hy (e1/2.0-1/2.m
A : @) (k=1/2,0=1/2,m+1/2)
co Ot — A28y Hy (k—1/2,0-1/2,m+1/2))
wherecy = 1/,/eolio is the velocity of light in free space and (12)
¢ andy,. are the relative permittivity and permeability, respec-
tively. whered, {« = = ory} is a difference operator and is omitted
Let due to a unit value. It should be noted that ficand H, com-

- ponents are determined using the relation¥ofe, E = 0 and
E(z,y, z,t) = E(,,y,.)expli(kocot — Bretz)]  (5) vV .H = 0. As found in [4], the use of the divergence relations
= . contributes to a reduction in roundoff errors with subsequent
H(@, y, 2, t) = Hz,y, ) expli(kocot = frerz)] - (6) stability of the numerical results. |
whereE andH are the slowly varying envelope functionsxgf ~ After changing the coordinatein the propagation direction
Bret iSthe reference phase constant representing the fast-vanfidgr [2], we obtain the imaginary-distance scheme. The field
spatial phase, ank} is a wavenumber in free space. After subdistributions of all components are calculated stepwise if-the
stituting (5) and (6) into (3) and (4), and using a notation dfirection. An arbitrary input field that contains the lowest mode
(z,y, 2) = (kAz, /Ay, mAz), we obtain the following dif- field converts into the lowest eigenmode field, as the input field
ference equations based on a uniform orthogonal Yee meshpropagates in ther+direction. Note that the stability criterion
of the scheme [4] is expressed As /A, < 1/v/2 for A, =
Ee (k—1/2,0,m+1) Az = Ay. If A7/A; is not within the stability criterion, the
_ 1 p scheme becomes numerically unstable.
1= jBetpz)2 (14 rer B2/ 2) B (5172, 0.m) So far,8,s in (7)—(12) have been approximated by the con-
+ Az6.E. (k—1/2,0,m+1/2) ventional central-difference operators. Hence, the field vectors
across an arbitrary interface cannot be properly evaluated. To ex-
actly evaluate the fields near the interface, we have to introduce
By, (k,0=1/2,m+1) the modified FD formula that takes into account the boundary

1 o
= 1+ §6,eA2/2)E B conditions.
T jpuinyz < [+ 3Bt B2/2) By 1 1=/, m)

— jkoAzHy (-1/2,¢,m+1/2)]  (7)

+ Az0,E. (k,0—1/2,m+1/2)
+ jkoAzH, (k e—1/2,m+1/2)]  (8)
Hy (k,e=1/2,m+1/2) The consecutive sampling points shown in Fig. 1 are con-
1 ) sidered.y is the envelope function of any field component.
T 1 iB.2A2/2 etz )2 X [(1 4 jBrerAz/2) Supppse that a dielectric interface b.etween the agre.§ gnd
cladding €., 1) is located between points—-1/2 andk and is at
distancey, Az (0 < v, < 0.5) from pointk. n is a unit normal
. vector at the interface. Let(*) and () refer to the fields in
+ JkolAzer (k,e-1/2) By, (k,ffl/lm)] the core and cladding around the interface, respectively. In this
(9) case, the modified FD formulais appliedtap; 1 /2 andé, ¢k

B. Modified FD Formula

X Hy (k,0-1/2,m—1/2)
+ Az H. (r,0-1/2,m)
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dielectric interface Following the same procedure for evaluating (17), we can
&l obtain an FD formula fob,. E. (r_1/2, ¢, m+1/2) in (7)
(1)
k-3/2 . SN er12 Pl _ 1 B B eremtry2)
__?Oi___fli_l.__¢k l/_2 2li___¢_o___._¢i....__ 5$Ez, (k—1/2,,m+1/2) = 1— v A
y ; (23)
S PO £
L) <2 =1 +7)E., (k, ¢, m+1/2)
x ¥Ax
¥ = Yol k41, 6, mr1/2)- (24)
Fig. 1. Sampling points near a dielectric interface. Furthermore, 6,H, (k—1/2,e-1/2,m+1/2) In  (12) and

6cH. (r,0—1/2,m) IN (9) are calculated with the use of the
To obtain the modified FD formula regardidgy, 1,2, We  boundary conditions af x H) = n x H® andn -, HY) =
express the fieldg;,_; andy(!) using Taylor series expansionsn - u,,H(Q). Recall thatu, has been omitted due to a unit
Ax ) value. Hence, the treatments of the magnetic-field components
Pr—1=Ph=1/27 5~ Satpr—1/2 + O (Az?) (13) are simplified in comparison with those of the electric-field

components in (17), i.e.,
oM =10+ (L =) Awb,pp—1/2 + O (Az?) .

(14) buHy (k—1/2,6-1/2, m+1/2)
1) _
By subtracting (14) from (13), we obtain the following FD ex- _ ! Ha” — Ha, (k-1,0-1/2,m+1/2) (25)
pression based on the one-sided difference operator: L= Az
1 ) — pp_ HY =H®
baprmtjy = T T (15)
Vo z = (1 4+7v2)Hy, (k, 0-1/2, m+1/2)
Similarly, an expression faf, ¢, becomes — Yoy, k41, 0-1/2, m+1/2) (26)
2 s 6oH (k. t-1/2.m
Bion = — §0k+1/i 14 ‘ (16) , (K, £=1/2,m) o
T2 v 2 H (kt172,0-172,m) — Hz 27)
0™ in (15) andy(® in (16) are calculated taking into account T 1427, Ax

the boundary conditions [16], [17] as follows. H® — g
For exampleg..€,. (x, e)Ex, (k, ¢, m) IN (11) is expressed as z Mz
= (3 =) H., (k=1/2,0-1/2,m)
: — (3 = Ya) Hz, (=372, =172, m)- (28)
a7 The modified FD formula is also derived for the derivatives
The relation betweed®'" and E{? at the interface is given with respect toy. The formula foré, is used in combination
by the boundary conditions af x E®") = n x E® andn - with that foré,,.
€r, wEW =mn- €r, aE? e, It should be noted that the modified FD formula slightly af-
1 1) _ 2 2 fects the stability criterion [15]. Although7/A; in the mod-

nalfy) = my B =no Y —n, B (18) ified method haZ to be a sr[nal]ler valuegtha{l that in the conven-

€rco (anﬂ(Cl) + nyEg(,l)) =€l (nmEf) + nyE?SZ)) . (19) tional method, the modified method has high computational ef-
ficiency, as will be demonstrated in Section Il

26, a1 Er (k41/2,6,m) — E?
1+ 2y,

Ocr, (k, 0) Ea, (k, 0,m) =

By eIiminatingEZ(,l) from (18) and (19), we can Writé’f) as ) ) _
C. Body-of-Revolution (BOR) Imaginary-Distance

E@___ freo g, (€r.co = €r.cl)Matly po) Propagation Method
” €r, cong + €r, cln% ¥ €r, cong + €r, cln% Y .
(20) The BOR technique [7] has often been employed for the

EWM andE§2) can be obtained by the linear interpolation anfDTD analysis of axially symmetric optical elements [20],
extrapolation of nearby fields, i.e., [21]. The use of the technique enables us to accurately describe
a _ (3 L the circular interface in the cylindrical coordinates based on
B = (5 - ’YZ)Em,(k—l/u, m) — (5 - %)Em,(k—fi/zl’,m) Yee's mesh. We are, therefore, interested in investigating the
(21) extentto which the results obtained by the modified FD formula
Ey (k,e41/2,m) T Ey, (k, e=1/2,m) in rectangular coordinates coincide with those by the BOR
) 2 technique. A BOR imaginary-distance propagation method can
be formulated as follows.

2
EZ(/):(l—{—'ym

E'z k+1,¢ ,m +E1 k l— ,m . A .
— Va v (kb L, ER1/2, m) 5 v (b1 12 m), (22) Cylindrical and rectangular coordinates are related:by

As a result, (17) is calculated using (20)—(22). The position ﬁfEOS ¢ ar:jdy :>pfin ¢. The eIectrtljc and magnetic fields for the
an arbitrary dielectric interface is set by, while the direction "_1 mode ¢ > 1) are expressed as
of a unit normal vector is set by, andn,. E(p, ¢, 2, 1) = E(,, -y exp(jlo) exp[j(wt — Bretz)] (29)
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ﬁ(p7 ¢7 Z, f) H(p z) exp(jﬂd)) GXp[ (Wt - /Href7)] (30) At’ Ap (,um)
0 002 004 006 008 01 0.12
whereexp(jl¢) represents the azimuthal dependence of the 1.00 L e o0 o 9 —@ -
fields. Consequently, the partial derivativejitis performed an- —_ I : %i A ]
alytically [7], [20], [21]. This means that the BOR technique g) [ % X A A ]
reduces the original three-dimensional model to an equivalent & ©9-95 - /% N
two-dimensional one. = i X § ; / ]
Substituting (29) and (30) into Maxwell’'s equations in cylin- §” 0.90 - \ X"';/‘X ]
drical coordinates, we obtain the following difference equations: § [ \\ / 1
] . \ // i
E, (k+1/2,m+1) 0.85 \A/ ]
1 A TeN T 1 1 1
RS Ie R [(1+ BretA2/2)Ep, (54172, m) 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
+ A20,E. (k41/2, m+1/2) A, Apl
— jkoAzHy (k41/2,m+1/2)] (31) Fig.2. Overlapintegral as afunction & (minor component, ). Modified
E FD formulae, staircase approximatior, EDCT A, and BOR techniqué).
&, (k, m+1)
= ;A (14 jBretAz/2)Ey, (k,m) where(kAp, mAz) = (p, z) andd, is a difference operator. It
1= jbretAz/2 should be noted that (31)—(36) can be utilized for the computa-
tj M_Z E. (kmt1/2) tions of field components away from theaxis.
P(k) ' The field components on theaxis, E. (x—o), £, (k—0), and
+jkoAzH, (., m+1/2)] (32) H,, (k—0), aretreated as follows [7], [20], [21E.  (x—¢) for the
HE,, mode can be obtained by Ampere’s law of
Hp, (k,m41/2)
1 R
= 14 jBeetAz/2)H , (k. m— //——EdS j{Hdl
L — jBretAz/2 N+ Bt A2 D Hy o/ s ¢ 1
+ Az6,H. (1,m) ie.
+ikoAzer (1) Eg (1m)] (33) " 5l Ap
H¢,(k+l/2,m+l/2) JR0Er, (k=0)L2z, (k=0)T 5
1 . 27 ) Ap
= 1= jBuiie)2 X | (14 jBretAz/2)Hy (k41/2,m—1/2) = i Hy (1=1/2) exp(jle) - dp =0. (37)
+ tAz H. (k1 )2.m) Thus, E. (x—0) is fixed to be zero. Fortunately, we can omit
. Plk+1/2) ’ H_p,(kz()), sinceH,, (x=o) is muIt_ipIied by the factop,—¢y =
— jkoAzér (ky1/2) 0in (36). As a resultE, (1—o) is not needed to evaluate the
relevantfieldsE. (x—o)andH, —o)], sothatby .—o)isalso
Ep (kt1/2,m) (34)  omitted.
E In the BOR technique, th&., E,, andH, components can
z (kym+1/2) 1 be placed on a dielectric interface, and £, are tangential to
. the interface, whild, is vertical, so that the fields are contin-
(1 = jPretAz/2)er, ) uous at the interface. For this cagg,can be approximated by
% [(1 4 jBuetA2/2)er. 1) the cen_tral—dlfference operator, and interface conditions can be
determined by Ampere’s and Faraday’s laws [7]. We estimate
Az thate,. (1) on the interface equals the average of the relative per-
B (k,m-1/2) — o 8p{pyer, ) Ep, (k,m) } mittivities along the interface [5].
IA Finally, the BOR imaginary-distance propagation method is
—J— &, () Eg, (k,m) (35) obtained by changing the coordinate the propagation direc-
P(k) tion to j. The derived method is applied to the evaluation of the
He, (kt1/2,m+1) fundamental mode (HE) in the next section. (This method can
_ 1 also give higher order modes, such as;HEnd HE;, without
(1 — jBretAz/2) using a special technique [4].)
1 re A 2 m
X | (Ut 3Bt A2/ 2D H-, (heg1/2,m) lll. RESULTS
__ Az 8ol p(r1/2)Hp, (ks1/2,mr1/2)} We assess the accuracy of the modified method in the analysis
P(k+1/2) ' ’ ’ of the HE; mode of a step-index circular fiber. The refractive
{Az indexes of the core and cladding are chosen tq/m =1.5
oy Ho, (k1/2,m+172) (36) and /6o = 1, respectively. A wavelength of = 1.55 um

Authorized licensed use limited to: HOSEI UNIVERSITY KOGANEI LIBRARY. Downloaded on July 27, 2009 at 05:24 from IEEE Xplore. Restrictions apply.



ANDO et al. EIGENMODE ANALYSIS OF OPTICAL WAVEGUIDES 1631

¥ (um)

0.0 T T T T T

(2) (b)

1.01

Y (pm)

0.0 " T = .
0.0 0.5 1.0 0.0

0.5
x (pm) x (um)
() (d

Fig. 3. Field distribution of minor componet, for Ay = 0.0084X (quarter region). (a) Modified FD formula. (b) Exact solutions. (c) EDCT. (d) Staircase
approximation.

1.0

and a core radius oR = 0.52 um are used, so that the nor-can be seen, the data calculated by the modified FD formula are
malized frequency i¥ = 2.36. This fiber is not realistic, butis in agreement with those by the BOR technique.
considered to investigate the sensitivity of the modified methodFig. 3 illustrates the typical contour plots of th&, com-
in a strongly guiding structure. (We also analyzed a fiber withgonents forA, = 0.0084\ (=R/40) evaluated by four
higher value of permittivity, i.e.,/¢;, ¢, = 3.6, and confirmed methods. The field distribution obtained by the modified
that the effects of the modified method are essentially the samethod [Fig. 3(a)] remarkably agrees with that by the exact
as those to be presented in Figs. 2 and 4.) The computatiog@ltion [Fig. 3(b)]. On the other hand, the EDCT [Fig. 3(c)]
domain is fixed to be., x L, = 5.2 um x 5.2 um. The trans- cannot sufficiently eliminate the numerical noise around the
verse mesh size is designatedag=Az = Ay). core—cladding interface caused by the staircase approximation
Consideration is given to the accuracy of the field profilgFig. 3(d)]. It can be said that the modified FD formula greatly
Fig. 2 shows the overlap integral between the numerical ap@ntributes to a reduction in the discretization error.
exact field profiles of the minor componest, as a function  The accuracy of the modified method is also assessed by the
of A;. For comparison, we present the data obtained by oth&fjuation of the propagation constant. In the imaginary-dis-
techniques, i.e., the staircase approximation and the typigghce procedure, the propagation constant of the eigengipde
EDCT [12] that has recently been proposed. It is clearly seghn pe obtained by the growthy > Siet) or decay(Bo < fBret)

that the modified method leads to substantial improvemegtine propagating field amplitude atandr + A7 [2], [4]
in accuracy over other techniques. Although not plotted, a

similar tendency is observed in all electric- and magnetic-field 2
. In P(r T —In P(r Pr dS
components. B(7) = Pret + lim Jsltote JFAAT }} | {|2(d)5};]| !
Fig. 2 also presents the data evaluated by the BOR imagi- s 1¥(7)

nary-distance propagation method. Note that we can obtain the = Po (38)

field profile of £, by the vector transformation from cylin-

drical-to-rectangular [22, Appendix Il]. Since the BOR techwhere the weighted average is introduced to minimize numer-
nigue accurately describes the circular interface, the discretiizal errors [4]. For the calculation ¢fy using (38), we employ
tion error is eliminated without modifying the FD equations. Aa technique for iteratively renewing..; [23].
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Av, Ap (um) T N VAR
0.4250 002 004 006 008 0.1 0.1 554 - P -.
[ ] /.’QK. 1
0.420 | ] 1.552 1 ]
Bexact E by 1 ’&o i
sL ] % 1.550 | —
| o . ~ T - -
- 04151 ] < i ~Th G
0410: _: 1548 ’ ¢ Wb _— 5r,sub7 1
0.405 ; ] L 35— 1
[ 1.546 o 1‘2 g(ﬂm) | I
0,400 Dot vt ] 0 5 10 15 20
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
AJA, ApIA Wp (4m)

Fig. 5. Effective index3, /k, as a function ofu,, (Ef, mode). Modified FD

Fig. 4. Normalized propagation constdhtas a function of\;. Modified FD formulas, theoretical [23]0), and experimental [23k

formulae, staircase approximation, EDCT A, and BOR techniqué).

duced to 0.024 (=R/14) so as to obtaifB — Bexact| < 0.001.
Furthermore, to obtain an overlap integral of greater than 0.99
by the EDCT, we have to reduc, to 0.0065 (=R/52). Con-
Propa- | CPU | Mem— sequently, it can be said that the use of the modified FD formula
reduces the CPU time and memories while maintaining compa-
rable accuracy.

TABLE |
COMPUTATIONAL EFFICIENCY

Method | Ay/A | A7/X |gation | time | ory

steps | (s) | (MB) We finally treat the sloped-side rib guide [19] illustrated in
Modified | 0.037 | 0.018 300 55 | 2.7 the inset of Fig. 5. The configuration parameters gaFg ., =

1.538, /€, g1 = 1.568, A = 0.633 um, sidewall anglé = 32°,
central rib height. = 1.07 um, lateral height;.; = 0.34 um,
and base width of the riby;, varying from 4.5 to 17um. The
0.0065 | 0.0043 | 1222 | 5450 | 44 transverse mesh size is fixed to g = 0.025 pm (=0.039)).
Fig. 5 shows the effective inde¥% /kq as a function ofwy,,
whereg, is the propagation constant of thg¢ Enode. The data
The effective relative permittivity is defined aspresented by open circles and crosses are the calculated and ex-
eret = (0o/ko)?, and the normalized propagation conperimental results presented in [19], respectively. The values of
stant iSB = (ér,cft — €r,c1)/(€r,co — €r,c1). CONVErgence g/, evaluated by the modified method agree well with the
behavior of B as a function ofA; is shown in Fig. 4. It is previously published data. We also show the typical contour
worth mentioning that the modified FD formula achieves fastgk)ts of E, and E, for w,, = 10 um in Fig. 6. The electric
convergence than the staircase approximation and EDCT. Nf¢8d discontinuities across the sloped side and the horizontal
that the BOR technique leads to monotone convergence to {hrfaces are clearly observedfiy [Fig. 6(b)].
exact valueB....;. The convergence behavior of the modified
FD formula is almost similar to that of the BOR technique. IV. CONCLUSION
This suggests that the modified FD formula exactly evaluates

. . . . . We have applied a modified FD formula that takes into ac-
the behavior of the field vectors across an arbitrary interface in " . S
. count the boundary conditions at a dielectric interface to an
rectangular coordinates.

. - - . imaginary-distance propagation method based on Yee's mesh.
The co_mput_atlonal efficiency of the mod|f|eq method is ato demonstrate the validity of the modified method, we have an-
olther. topp of interest. Table | tab.ula-tes CI,DU time anq memQl'yzed the eigenmode of a step-index circular fiber. Calculations
ries, in which the convergence 6fin six decimal places is ob- e field profiles show that the modified FD formula greatly
tained. The calculations are performed on a Pentium 800-Midgnibytes to a reduction in a discretization error. In the evalu-
PC. For reference, the data of the EDCT are also presenteddghn, of the normalized propagation constant against transverse
three values ofA;. Recall thatA7/A; has to be a value for megh size, the modified FD formula achieves faster convergence
which the scheme becomes numerically stable. For this invegan a staircase approximation and an effective-dielectric-con-
tigation, A7 is chosen to be a maximum value within the stastant technique. It is revealed that the results obtained by the
bility criterion. WhenA, is chosen to be 0.037(=R/9) inthe  modified FD formula coincide with those by a body-of-revolu-
modified method| B — Bexact | is evaluated to be less than 0.00%ion technique, which accurately describes the circular interface.
(Fig. 4), while the overlap integral is evaluated to be greater thag a further application, we have evaluated the eigenmodes of
0.999 (Fig. 2). Table | shows that the modified method needkbped-side rib guides. The obtained data agree well with pre-
more CPU time and memories in comparison with the EDCiously published data including calculated and experimental
for A; = 0.037)\. However, the EDCT requires that; be re- results.

0.037 | 0.025 212 31 2.3
EDCT 0.024 | 0.016 362 126 | 4.3
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