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Abstract—A modified finite-difference (FD) formula for an arbi-
trary dielectric interface is applied to an imaginary-distance prop-
agation method based on Yee’s mesh. To confirm the validity of the
modified method, we first analyze the eigenmode of a step-index
circular fiber. A reduction in a discretization error is demonstrated
in the evaluation of the field profile. Calculations of the normalized
propagation constant show that the convergence rate of the modi-
fied FD formula is faster than that of traditional techniques and is
comparable to that of a body-of-revolution technique. As a further
application, we analyze the eigenmodes of sloped-side rib guides.
These data agree well with previously published data.

Index Terms—Dielectric waveguides, electromagnetic fields, fi-
nite-difference methods, Maxwell equations, numerical analysis,
optical waveguides.

I. INTRODUCTION

T HE KNOWLEDGE of the eigenmode in an optical wave-
guide is of fundamental importance in the design of pho-

tonic integrated circuits. To date, many methods have been pro-
posed for this important issue [1]–[4]. One of them is an imagi-
nary-distance propagation method [2] based on Yee’s mesh [4],
[5]. The use of Yee’s mesh has the advantage that the obtained
eigenmode fields can directly be utilized for the finite-difference
time-domain (FDTD) analysis [6].

In the FDTD method, the FD equations are conventionally
obtained by discretizing Maxwell’s equations with the use of
a uniform orthogonal Yee mesh [7]. The space derivatives of
Maxwell’s equations are approximated by central-difference
operators. It is well known that the conventional FD formula
based on the central-difference operators induces a discretiza-
tion error when a staircase approximation is introduced to
describe an arbitrary dielectric interface.

To reduce the discretization error, researchers have devel-
oped some techniques [7]–[12]. One is the contour-path tech-
nique [7], [8], in which space cells local to a dielectric inter-
face are deformed to conform with the interface position and
the FD equations for the fields adjacent to the interface are de-
rived on the basis of Faraday’s and Ampere’s laws. Unfortu-
nately, the derived FD equations cannot naturally be incorpo-
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rated into the imaginary-distance scheme. Another is the ef-
fective-dielectric-constant technique (EDCT) [7], [9]–[12], in
which permittivities along the stepped edges of Yee’s mesh are
estimated by various averaging procedures. In contrast to the
contour-path technique, the EDCT can be incorporated into the
imaginary-distance scheme without difficulties [5].

Although the EDCT appears to improve the overall accuracy
[9]–[13], the use of the conventional FD formula results in slow
convergence as a function of transverse mesh size. This is be-
cause the conventional FD formula assumes the continuity of
the field at a dielectric interface. In practice, the field and its
derivative are often discontinuous at the interface. To exactly
evaluate the field discontinuity, we have to take into account the
boundary conditions.

Recently, a modified FD formula, which is constructed by
combining the boundary conditions and one-sided difference
operators, has been proposed for the FDTD algorithm [14]–[17].
It was demonstrated that the numerical errors caused by the tra-
ditional techniques are reduced in the analysis of scattering by
a grating coupler [14] and by a dielectric cylinder [15]–[17].
However, no attempt has been made for the eigenmode analysis
of an optical waveguide except for our preliminary report [18].

In this paper, we apply the modified FD formula [16], [17]
to the imaginary-distance propagation method based on Yee’s
mesh and show the effectiveness of the modified method in the
eigenmode analysis of an optical waveguide with an arbitrary
dielectric interface. Furthermore, a body-of-revolution (BOR)
[7] imaginary-distance propagation method is newly derived for
a comparative study.

After the derivation of the modified and BOR methods, we
first analyze a step-index circular fiber, since the exact field pro-
file and propagation constant are available. Calculations of the
field profiles show that the discretization error is substantially
reduced by virtue of the modified FD formula. In the evaluation
of the normalized propagation constant against transverse mesh
size, the modified FD formula also achieves faster convergence
than the staircase approximation and the typical EDCT [12]. It
is worth mentioning that the results of the modified method al-
most coincide with those of the BOR method.

We next analyze the eigenmodes of sloped-side rib guides
[19]. The evaluated effective indexes are in agreement with pre-
viously published data, including calculated and experimental
results.
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II. FORMULATION

A. Imaginary-Distance Propagation Method Based on Yee’s
Mesh

We summarize the formulation of the imaginary-distance
propagation method based on Yee’s mesh, following Lee’s pro-
cedure [4]. Consider a linear lossless medium with permittivity

and permeability . The formulation begins with Maxwell’s
equations

(1)

(2)

where and are the electric- and magnetic-field vectors, re-
spectively. and are normalized so that their magnitudes may
be of the same order, i.e., and . Substi-
tuting the set of normalized fields into (1) and (2), we get

(3)

(4)

where is the velocity of light in free space and
and are the relative permittivity and permeability, respec-

tively.
Let

(5)

(6)

where and are the slowly varying envelope functions of,
is the reference phase constant representing the fast-varying

spatial phase, and is a wavenumber in free space. After sub-
stituting (5) and (6) into (3) and (4), and using a notation of

, we obtain the following dif-
ference equations based on a uniform orthogonal Yee mesh:

(7)

(8)

(9)

(10)

(11)

(12)

where or is a difference operator and is omitted
due to a unit value. It should be noted that theand com-
ponents are determined using the relations of and

. As found in [4], the use of the divergence relations
contributes to a reduction in roundoff errors with subsequent
stability of the numerical results.

After changing the coordinatein the propagation direction
to [2], we obtain the imaginary-distance scheme. The field
distributions of all components are calculated stepwise in the
direction. An arbitrary input field that contains the lowest mode
field converts into the lowest eigenmode field, as the input field
propagates in the +direction. Note that the stability criterion
of the scheme [4] is expressed as for

. If is not within the stability criterion, the
scheme becomes numerically unstable.

So far, s in (7)–(12) have been approximated by the con-
ventional central-difference operators. Hence, the field vectors
across an arbitrary interface cannot be properly evaluated. To ex-
actly evaluate the fields near the interface, we have to introduce
the modified FD formula that takes into account the boundary
conditions.

B. Modified FD Formula

The consecutive sampling points shown in Fig. 1 are con-
sidered. is the envelope function of any field component.
Suppose that a dielectric interface between the core () and
cladding ( ) is located between points and and is at
distance ( ) from point . is a unit normal
vector at the interface. Let and refer to the fields in
the core and cladding around the interface, respectively. In this
case, the modified FD formula is applied to and .
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Fig. 1. Sampling points near a dielectric interface.

To obtain the modified FD formula regarding , we
express the fields and using Taylor series expansions

(13)

(14)

By subtracting (14) from (13), we obtain the following FD ex-
pression based on the one-sided difference operator:

(15)

Similarly, an expression for becomes

(16)

in (15) and in (16) are calculated taking into account
the boundary conditions [16], [17] as follows.

For example, in (11) is expressed as

(17)
The relation between and at the interface is given
by the boundary conditions of and

, i.e.,

(18)

(19)

By eliminating from (18) and (19), we can write as

(20)
and can be obtained by the linear interpolation and

extrapolation of nearby fields, i.e.,

(21)

(22)

As a result, (17) is calculated using (20)–(22). The position of
an arbitrary dielectric interface is set by, while the direction
of a unit normal vector is set by and .

Following the same procedure for evaluating (17), we can
obtain an FD formula for in (7)

(23)

(24)

Furthermore, in (12) and
in (9) are calculated with the use of the

boundary conditions of and
. Recall that has been omitted due to a unit

value. Hence, the treatments of the magnetic-field components
are simplified in comparison with those of the electric-field
components in (17), i.e.,

(25)

(26)

(27)

(28)

The modified FD formula is also derived for the derivatives
with respect to . The formula for is used in combination
with that for .

It should be noted that the modified FD formula slightly af-
fects the stability criterion [15]. Although in the mod-
ified method has to be a smaller value than that in the conven-
tional method, the modified method has high computational ef-
ficiency, as will be demonstrated in Section III.

C. Body-of-Revolution (BOR) Imaginary-Distance
Propagation Method

The BOR technique [7] has often been employed for the
FDTD analysis of axially symmetric optical elements [20],
[21]. The use of the technique enables us to accurately describe
the circular interface in the cylindrical coordinates based on
Yee’s mesh. We are, therefore, interested in investigating the
extent to which the results obtained by the modified FD formula
in rectangular coordinates coincide with those by the BOR
technique. A BOR imaginary-distance propagation method can
be formulated as follows.

Cylindrical and rectangular coordinates are related by
and . The electric and magnetic fields for the

HE mode ( ) are expressed as

(29)
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(30)

where represents the azimuthal dependence of the
fields. Consequently, the partial derivative inis performed an-
alytically [7], [20], [21]. This means that the BOR technique
reduces the original three-dimensional model to an equivalent
two-dimensional one.

Substituting (29) and (30) into Maxwell’s equations in cylin-
drical coordinates, we obtain the following difference equations:

(31)

(32)

(33)

(34)

(35)

(36)

Fig. 2. Overlap integral as a function of� (minor componentE ). Modified
FD formula�, staircase approximation�, EDCT4, and BOR technique
.

where and is a difference operator. It
should be noted that (31)–(36) can be utilized for the computa-
tions of field components away from the-axis.

The field components on the-axis, , , and
, are treated as follows [7], [20], [21]: for the

HE mode can be obtained by Ampere’s law of

i.e.,

(37)

Thus, is fixed to be zero. Fortunately, we can omit
, since is multiplied by the factor

in (36). As a result, is not needed to evaluate the
relevant fields [ and ], so that is also
omitted.

In the BOR technique, the , , and components can
be placed on a dielectric interface. and are tangential to
the interface, while is vertical, so that the fields are contin-
uous at the interface. For this case,can be approximated by
the central-difference operator, and interface conditions can be
determined by Ampere’s and Faraday’s laws [7]. We estimate
that on the interface equals the average of the relative per-
mittivities along the interface [5].

Finally, the BOR imaginary-distance propagation method is
obtained by changing the coordinatein the propagation direc-
tion to . The derived method is applied to the evaluation of the
fundamental mode (HE) in the next section. (This method can
also give higher order modes, such as HEand HE , without
using a special technique [4].)

III. RESULTS

We assess the accuracy of the modified method in the analysis
of the HE mode of a step-index circular fiber. The refractive
indexes of the core and cladding are chosen to be
and , respectively. A wavelength of m
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Fig. 3. Field distribution of minor componentE for � = 0:0084� (quarter region). (a) Modified FD formula. (b) Exact solutions. (c) EDCT. (d) Staircase
approximation.

and a core radius of m are used, so that the nor-
malized frequency is . This fiber is not realistic, but is
considered to investigate the sensitivity of the modified method
in a strongly guiding structure. (We also analyzed a fiber with a
higher value of permittivity, i.e., , and confirmed
that the effects of the modified method are essentially the same
as those to be presented in Figs. 2 and 4.) The computational
domain is fixed to be m m. The trans-
verse mesh size is designated as .

Consideration is given to the accuracy of the field profile.
Fig. 2 shows the overlap integral between the numerical and
exact field profiles of the minor component as a function
of . For comparison, we present the data obtained by other
techniques, i.e., the staircase approximation and the typical
EDCT [12] that has recently been proposed. It is clearly seen
that the modified method leads to substantial improvement
in accuracy over other techniques. Although not plotted, a
similar tendency is observed in all electric- and magnetic-field
components.

Fig. 2 also presents the data evaluated by the BOR imagi-
nary-distance propagation method. Note that we can obtain the
field profile of by the vector transformation from cylin-
drical-to-rectangular [22, Appendix II]. Since the BOR tech-
nique accurately describes the circular interface, the discretiza-
tion error is eliminated without modifying the FD equations. As

can be seen, the data calculated by the modified FD formula are
in agreement with those by the BOR technique.

Fig. 3 illustrates the typical contour plots of the com-
ponents for ( ) evaluated by four
methods. The field distribution obtained by the modified
method [Fig. 3(a)] remarkably agrees with that by the exact
solution [Fig. 3(b)]. On the other hand, the EDCT [Fig. 3(c)]
cannot sufficiently eliminate the numerical noise around the
core–cladding interface caused by the staircase approximation
[Fig. 3(d)]. It can be said that the modified FD formula greatly
contributes to a reduction in the discretization error.

The accuracy of the modified method is also assessed by the
evaluation of the propagation constant. In the imaginary-dis-
tance procedure, the propagation constant of the eigenmode
can be obtained by the growth or decay
in the propagating field amplitude atand [2], [4]

(38)

where the weighted average is introduced to minimize numer-
ical errors [4]. For the calculation of using (38), we employ
a technique for iteratively renewing [23].
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Fig. 4. Normalized propagation constantB as a function of� . Modified FD
formula�, staircase approximation�, EDCT4, and BOR technique
.

TABLE I
COMPUTATIONAL EFFICIENCY

The effective relative permittivity is defined as
, and the normalized propagation con-

stant is . Convergence
behavior of as a function of is shown in Fig. 4. It is
worth mentioning that the modified FD formula achieves faster
convergence than the staircase approximation and EDCT. Note
that the BOR technique leads to monotone convergence to the
exact value . The convergence behavior of the modified
FD formula is almost similar to that of the BOR technique.
This suggests that the modified FD formula exactly evaluates
the behavior of the field vectors across an arbitrary interface in
rectangular coordinates.

The computational efficiency of the modified method is an-
other topic of interest. Table I tabulates CPU time and memo-
ries, in which the convergence of in six decimal places is ob-
tained. The calculations are performed on a Pentium 800-MHz
PC. For reference, the data of the EDCT are also presented for
three values of . Recall that has to be a value for
which the scheme becomes numerically stable. For this inves-
tigation, is chosen to be a maximum value within the sta-
bility criterion. When is chosen to be 0.037( ) in the
modified method, is evaluated to be less than 0.001
(Fig. 4), while the overlap integral is evaluated to be greater than
0.999 (Fig. 2). Table I shows that the modified method needs
more CPU time and memories in comparison with the EDCT
for . However, the EDCT requires that be re-

Fig. 5. Effective index� =k as a function ofw (E mode). Modified FD
formula�, theoretical [23]
, and experimental [23]�.

duced to 0.024 ( ) so as to obtain .
Furthermore, to obtain an overlap integral of greater than 0.99
by the EDCT, we have to reduce to 0.0065 ( ). Con-
sequently, it can be said that the use of the modified FD formula
reduces the CPU time and memories while maintaining compa-
rable accuracy.

We finally treat the sloped-side rib guide [19] illustrated in
the inset of Fig. 5. The configuration parameters are

, , m, sidewall angle ,
central rib height m, lateral height m,
and base width of the rib varying from 4.5 to 17 m. The
transverse mesh size is fixed to be m ( ).

Fig. 5 shows the effective index as a function of ,
where is the propagation constant of the Emode. The data
presented by open circles and crosses are the calculated and ex-
perimental results presented in [19], respectively. The values of

evaluated by the modified method agree well with the
previously published data. We also show the typical contour
plots of and for m in Fig. 6. The electric
field discontinuities across the sloped side and the horizontal
interfaces are clearly observed in [Fig. 6(b)].

IV. CONCLUSION

We have applied a modified FD formula that takes into ac-
count the boundary conditions at a dielectric interface to an
imaginary-distance propagation method based on Yee’s mesh.
To demonstrate the validity of the modified method, we have an-
alyzed the eigenmode of a step-index circular fiber. Calculations
of the field profiles show that the modified FD formula greatly
contributes to a reduction in a discretization error. In the evalu-
ation of the normalized propagation constant against transverse
mesh size, the modified FD formula achieves faster convergence
than a staircase approximation and an effective-dielectric-con-
stant technique. It is revealed that the results obtained by the
modified FD formula coincide with those by a body-of-revolu-
tion technique, which accurately describes the circular interface.
As a further application, we have evaluated the eigenmodes of
sloped-side rib guides. The obtained data agree well with pre-
viously published data including calculated and experimental
results.
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Fig. 6. Field distributions forw = 10 �m (half region). (a) Major
componentE . (b) Minor componentE .
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