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to the Analysis ofz-Variant Rib Waveguides
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Abstract—Modified finite-difference formulas for a general po-
sition of an interface are applied to the propagating beam analysis
of -variant rib waveguides. The modified formula based on the
semivectorialH-field is found to be more insensitive to variation in
an interface position than that on theE-field. A discretization error
is satisfactorily reduced in tilted and tapered rib waveguides.

Index Terms—Finite-difference methods, optical beam propaga-
tion, optical waveguides.

I. INTRODUCTION

I T IS imperative to reduce the discretization error in the
propagating beam analysis of a-variant step-index optical

waveguide. There are some techniques to tackle this problem.
One of them is to use a modified grid that is adaptive to a
waveguide geometry. Another is to use a finite-difference (FD)
formula that allows a general position of an interface.

In the former technique, an oblique [1], a more advanced
bi-oblique [2], and a tapered [3] coordinate have been de-
veloped and tested in the finite-difference beam-propagation
method (BPM). A tapered-grid approach based on cylindrical
coordinates has been used in the BPM based on the method of
lines [4]. These modified grid techniques can successfully re-
duce the discretization error, although the connection between
different coordinates is often required depending on the model
to be analyzed.

On the other hand, the latter technique has the advantage that
Cartesian coordinates are uniformly used, so that an inherent
error caused by a nonuniform grid is completely eliminated.
Nevertheless, no attempt has been made for the analysis of a
three-dimensional (3-D)-variant step-index waveguide except
for our preliminary report [5]. This is due to the fact that the rig-
orous derivation of an FD formula is difficult for 3-D step-index
waveguides.

In this letter, we demonstrate that a simple modified FD
formula developed for the semivectorialH-field [6] can suc-
cessfully be employed for the propagating beam analysis of
-variant rib waveguides with a reduced discretization error.

After a brief explanation of the modified FD formula, we
discuss the difference between the results obtained from the E-
andH-field formulas and clarify the advantage of theH-field
formula through the eigenmode analysis. In the propagating
beam analysis, tilted and tapered rib waveguides are treated.
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Fig. 1. Rib waveguide geometry:W = 3:0 �m,H = 1:0 �m,T = 0:5 �m,
n = 3:44; n = 3:40

The field profile and the guided-mode power at the output are
compared with those obtained using a staircase approximation.

II. PROPERTIES OFMODIFIED FD FORMULAS

Modified FD formulas, which are regarded as the extension
of Stern’s formula [7], have been developed for semivectorial
fields by several authors [6], [8]–[11]. The formulas are derived
assuming a planar geometry where all the discontinuities are ei-
ther parallel or orthogonal to axes. This assumption is, therefore,
approximate when analyzing a 3-D waveguide. We should note,
however, that the paraxial wave in a slowly-variant waveguide
is usually treated in the propagating beam analysis; the interface
is nearly parallel or orthogonal to axes. Furthermore, the mod-
ified formula allows us to use an arbitrary interface position.
These facts encourage us to apply the modified formulas to the
propagating beam analysis of a-variant step-index waveguide.

We consider the rib waveguide shown in Fig. 1, which has
been used as a classical benchmark [12]. The configuration pa-
rameters are , rib width m,
central rib height m, and lateral height m.
Suppose that a discontinuity is located between pointsand
and the interface is at distance (with ) from
point . Using Taylor-series expansions of theE- or H-field near
the discontinuity and the boundary conditions at the interface,
we have derived the modified FD formulas that allow a general
position of an interface. For instance, the FD formula based on
theH-field [6] is expressed as

(1)

where ;
; ;

; and , in
which and are defined in [6]. The coefficient
must be unity when the normal component is treated. Equation
(1) is also used for the second derivative with respect to. A
formula similar to (1) has also been derived for theE-field [8]. It
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Fig. 2. Normalized propagation constantB as a function of� (� = 0:5).

should be noted, however, that the formula based on theH-field
has some advantages, as will be seen in Figs. 2 and 3.

The first-order term in (1) is neglected in this analysis. Since
the coefficient vanishes for , (1) is second-order accu-
rate as long as the normal component is treated. Although the
present analysis does not ensure second-order accuracy for the
tangential component , the first-order term has a much
smaller effect than the error caused by a staircase approximation
[13]. This leads to a significant improvement in accuracy even
for .

To assess how the results obtained from the modified for-
mulas for theE- andH-fields depend on the interface position,
we first make the eigenmode analysis for both the quasi-TE
and quasi-TM modes at a wavelength of m. The
transverse sampling width is fixed to be

m, and the total number of sampling points is taken to
be . The modified formulas are applied to
the alternating-direction implicit BPM with the imaginary-dis-
tance procedure using a unit amplitude as a starting field [6].

Fig. 2 shows the normalized propagation constant
as a function of . It is

clear that theE-field formula gives the same results as those
obtained from theH-field formula in the quasi-TM mode. It
should be noted, however, that the results from theE-field are
sensitive to the position of the interface in the quasi-TE mode,
while the results from theH-field are insensitive to the position.
The dependency of theE-field results on the interface position
is probably due to the fact that theE-field becomes singular
at the lower corners. This dependency has first been found
by Vassallo [9]. To eliminate this dependency, he developed
a six-point formula for theE-field Laplacian. It should be
noted that the application of the six-point formula to the BPM
requires an extra computational effort. It is worth mentioning
that the dependency on the interface position can almost be
eliminated by the use of the simple FD formula based on the
H-field.

Similar behavior observed in Fig. 2 is found in Fig. 3, in
which is expressed against with . We again find
that the data obtained for theH-field are more stable than those
for the E-field. Note that asymmetry of the waveguide geom-
etry with respect to the axis causes slight variation of for
the quasi-TE mode.

Fig. 3. Normalized propagation constantB as a function of� (� = 0:5).

Fig. 4. Fundamental-mode power as a function of propagation distance.

III. PROPAGATING BEAM ANALYSIS

Since the superiority of theH-field formula is demonstrated,
theH-field formula is applied to the propagating beam analyses
of -variant structures. We first study the propagating beam in
a tilted rib waveguide. The waveguide whose configuration pa-
rameters are identical to those in Fig. 1 is tilted by angle. Since
the configuration changes only in the– plane, we fix to be
0.5, while is variable. Fig. 4 shows the guided-mode power as
a function of propagation distance. The quasi-TE mode is tested,
and the tilt angle is typically chosen to be . The compu-
tational parameters are chosen to be m and

m. Ideally, the guided-mode power should be unity re-
gardless of the propagation distance. It is clearly shown that
the present scheme maintains the initial guided-mode power. In
contrast, the use of the staircase approximation (is fixed to
be 0.5) results in gradual deterioration with an increase in the
propagation distance.

We next consider a tapered rib waveguide. The rib width is
tapered from 3 to 2 m, as shown in the inset of Fig. 5. Cal-
culation is made for m. Other configuration and
computational parameters are the same as those used in Fig. 4.
Fig. 5 shows the guided-mode power at the output as a func-
tion of . Note that the guided-mode power dose not become
unity because of radiation loss along the tapered waveguide. For
comparison, the data obtained from the staircase approximation
are also shown. The present technique shows rapid convergence
behavior.

Fig. 6 illustrates the output field profiles for m.
Appreciable numerical noise is found for the staircase approxi-
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Fig. 5. Convergence behavior of the fundamental-mode power.

Fig. 6. Field profiles observed at the output of the tapered rib-waveguide: (a)
present(� = 0:5) and (b) staircase approximation(� = � = 0:5).

mation. The use of the present formula greatly contributes to a
reduction in the numerical noise.

IV. CONCLUSIONS

The simple modified finite-difference formula that allows a
general position of an interface has been applied to the propa-
gating beam analysis of rib waveguides with particular emphasis
on reducing the discretization error. After confirming the fact
that the results obtained from theH-field formula are almost
independent of the interface position, we calculate the propa-
gating beams in tilted and tapered waveguides. Numerical re-
sults clearly show a reduction in the numerical noise of the field
profile with fast convergence as a function of transverse sam-
pling width.
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