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Abstract—A Kretschmann-type surface plasmon resonance
waveguide sensor is analyzed using the wide-angle beam-
propagation method (BPM) with the complex Padé approximant
and the finite-difference time-domain (FDTD) methods based on
the recursive convolution (RC) and piecewise linear RC (PLRC)
techniques. The wavelength responses of the sensor are calculated,
and a detailed comparison of the numerical results is made. The
BPM results are validated through a comparison with the FDTD
results, in which the PLRC technique is required in terms of
accuracy. The waveguide sensor shows a maximum absorption
wavelength shift from 0.609 to 0.623 µm, as the refractive index of
an analyte is increased from 1.330 to 1.334, which is comparable
to the sensitivity of the conventional Kretschmann configuration.

Index Terms—Beam-propagation method (BPM), finite-
difference time-domain (FDTD) method, optical waveguide, Padé
approximant, piecewise linear recursive convolution (PLRC),
surface plasmon resonance (SPR) sensor.

I. INTRODUCTION

A SURFACE plasmon resonance (SPR) optical sensor
based on the Kretschmann configuration has been studied

in various applications, such as chemical and biochemical
sensing, drug screening, and environmental monitoring [1]–[4].
Although the Kretschmann-based sensor allows real-time and
high-sensitivity measurements, its miniaturization is difficult
due to the bulk structure that is composed of a prism coated with
a thin metal. To miniaturize an SPR sensor, a planar waveguide
structure has received much attention [1], [5], [6]. Unfortu-
nately, the sensitivity of the waveguide sensor is generally not
as high as that of the Kretschmann-based sensor.

To circumvent these difficulties, we have briefly re-
ported a sensor structure, in which input/output parts in
the Kretschmann configuration are replaced with optical
waveguides [7]. The characteristics of the Kretschmann-type
waveguide-based SPR sensor have been analyzed in the fre-
quency domain using the wide-angle beam-propagation method
(BPM) [8], [9] with the complex Padé approximant [10]–[12].
However, the numerical results of the BPM have not thoroughly
been validated using more general time-domain approaches,
such as the finite-difference time-domain (FDTD) method.
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In the time-domain analysis, the frequency-dependent for-
mulation is mandatory since the metal is a dispersive material.
The recursive convolution (RC) technique [13] is one of the
frequently used methods. The piecewise linear RC (PLRC)
technique [14], which is the improved version of the RC tech-
nique, is also widely used. The auxiliary differential equation
technique [15], [16] is a simple way to take into account the
material dispersion, although it requires more memory than the
RC and PLRC techniques.

So far, only a few efforts have been directed at applying the
frequency-dependent FDTD [(FD)2TD] to the analysis of SPR
sensors, e.g., [17]. One reason for a lack of (FD)2TD applica-
tions stems from the fact that the conventional Kretschmann-
based sensors can be efficiently designed with the three-layer
Fresnel equation approach based on the solution to plane wave
incidence. Another reason is that the wavelength responses
are not necessary for most conventional sensors since they are
based on an angular interrogation scheme, where the angle of
incidence of light is varied at a fixed operation wavelength.
In contrast, for the waveguide sensor, an angular spread of
the incident beam from the input waveguide should be fully
taken into account, to which the Fresnel equation approach is
not generally applicable. In addition, the wavelength response
is required due to a wavelength interrogation scheme, where
the operation wavelength is varied at a fixed incident angle.
To address these issues, we are motivated to apply the ver-
satile (FD)2TDs to the analysis of the wavelength responses
of the waveguide-based SPR sensors. Although the (FD)2TDs
are computationally intensive, the application is expected to
provide useful data not only for the validation of the BPM
results but also for the practical design of the SPR sensors.

The purpose of this paper is to discuss in detail the numerical
results of the waveguide-based SPR sensor for the frequency-
and time-domain analyses. In particular, the (FD)2TDs based
on the RC and PLRC techniques are applied to the analysis of
the sensor, and their numerical results are compared with those
of the BPM. To make the discussion self-contained, we first
present the numerical methods to be used, in which we describe
how to alleviate numerical instabilities that often occur when
the BPM is used to analyze waveguides with the metal. We
next calculate the wavelength responses of the SPR sensor, in
which the convergence of the numerical results of each method
is investigated with the help of an extrapolation technique. It
is shown that the response obtained from the PLRC–FDTD
agrees well with that from the BPM. In contrast, the response
from the RC–FDTD deviates from the others. As a result, the
BPM results are validated, and the PLRC–FDTD is required
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Fig. 1. Configuration of a waveguide-based SPR sensor.

for the SPR sensor analysis in terms of accuracy. We further
evaluate the characteristics of the SPR sensor, showing the
sensitivity comparable to that of the conventional Kretschmann-
based sensor. Finally, we present the wavelength response for
the experimentally obtained refractive index of the metal in the
Appendix.

II. SENSOR STRUCTURE

Fig. 1 illustrates the configuration of the waveguide-based
SPR sensor to be studied. We excite the field of the funda-
mental transverse magnetic (TM) mode from waveguide 1 and
extract the output power in waveguide 2. Varying the operation
wavelength λ, we evaluate the response of the output power,
which depends on the refractive index of an analyte na. Water
is selected as an analyte. The refractive indexes of the core
and cladding are chosen to be 1.4675 and 1.46, respectively.
The refractive index of the metal (Au) is determined using the
following Drude model dielectric function:

n2
m = 1 +

ω2
p

ω(jνc − ω)
(1)

with nm = 0.131 − j3.654 at 0.6328 µm [4], in which ω is
the angular frequency, ωp is the electron plasma frequency, and
νc is the effective electron collision frequency (the wavelength
response using the measured refractive indexes will be com-
pared with that based on the Drude model in the Appendix).
In this case, we obtain ωp = 1.130 × 1016 rad/s and νc =
1.988 × 1014 rad/s. Although the refractive indexes may show
temperature dependence, we ignore throughout this paper the
refractive index change that is caused by the thermal effect
for simplicity. The core width is 2d = 1.94 µm, where the
normalized frequency is V � 1.5 at λ = 0.6 µm. The thickness
of the metal is t = 0.045 µm for the efficient coupling between
the waveguide and surface plasmon polariton (SPP) modes.
The analyte is sufficiently thick (1 µm) to yield a converged
solution. The angle of incidence of the dielectric waveguide to
the metal film is designated as θ.

In the configuration of Fig. 1, when the z-component of the
effective index of the TM mode in the dielectric waveguide
is equivalent to the real part of that of the SPP wave, i.e.,
nTM sin θ = nSPP, the resonance condition is achieved, and
the incident light is coupled to the SPP wave. This results in

a noticeable reduction in the output power. In [7], we have
calculated nSPP against na through the eigenmode analysis
using the imaginary-distance BPM [18] to find the resonance
condition. As a result, we have chosen the incidence angle to
be θ = 78◦, in which the sensor is intended to operate around
0.6 µm [7].

III. NUMERICAL METHOD

A. Wide-Angle BPM With Complex Padé Approximant

The BPM can be used to treat the reflection at the inter-
face between different materials, provided that the interface is
placed parallel to the propagating beam direction, and the angle
of incidence to the interface is relatively large (this technique
has been first adopted in the analysis of the reflection at a
dielectric–air interface [19]). In this section, we place the SPR
sensor structure, as shown in Fig. 1, and investigate the sensing
characteristics using the wide-angle BPM based on the Padé
approximant [8], [9].

The basic equation of the (1,1) Padé-based BPM for the TM
mode is expressed as

∂Hy

∂z
=

1
2jkn0

(Dxx + ν)

1 + 1
4k2n2

0
(Dxx + ν)

Hy (2)

where

DxxHy =
∂

∂x

(
1
n2

∂Hy

∂x

)

ν = k2(n2 − n2
0)

in which k is the free-space wavenumber, n is the refractive in-
dex, and n0 is the reference refractive index to be appropriately
chosen. After discretizing (2) with the Crank–Nicolson scheme
and applying the modified second-order finite-difference (FD)
formula [20], we obtain a tridiagonal matrix that can be effi-
ciently solved by the Thomas algorithm.

Here, we refer to a stability problem with respect to the
sampling width in the propagation direction ∆z for the conven-
tional wide-angle BPM. With ∆z being larger than � 0.3 µm,
stable results can be obtained for the analysis of the present
sensor. Unfortunately, we have often encountered numerical
instabilities in the vicinity of the metal with a small ∆z that
is comparable to ∆x to be used. These small sampling widths
will be required to fairly compare the numerical accuracy of the
BPM with that of the FDTDs in the next section. To suppress
the instabilities that are caused by the use of a small ∆z,
we resort to the complex Padé approximant [10]–[12]. The
complex reference refractive index approach [12], which is
equivalent to the branch-cut rotation method [11], is adopted, in
which the reference refractive index is changed into a complex
value, i.e., n0 = n̄0e

iρ, where n̄0 is the original real reference
refractive index, and ρ is a phase factor.

Preliminary calculations have shown that the complex ref-
erence refractive index approach works at wavelengths longer
than the maximum absorption wavelength. However, the ap-
proach gives rise to a strong damping effect at shorter wave-
lengths, resulting in an underestimation of the output power.
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This damping effect is found to be caused by the attenuation
factor in the term regarding the phase variation ν in (2).
Hence, to avoid this effect, we empirically apply the complex
reference refractive index to only n0 in 2jkn0 and 4k2n2

0 in
(2), while n0 in ν is kept real. To show the effectiveness of
this modified approach, we have analyzed a four-layer planar
sensor structure (cladding/core/metal/analyte). The material of
each layer is the same as that used in Fig. 1, and the thicknesses
of the core and metal are 1.94 and 0.045 µm, respectively.
For the modified approach, the propagation loss is calculated
to be 10.1 dB/mm for na = 1.330 at λ = 0.5 µm, while for
the eigenmode analysis with the imaginary-distance BPM [18],
the loss is 11.1 dB/mm. As a result, this modified approach
can practically be used to investigate the sensor characteristics
even at shorter wavelengths without the numerical instability,
although its theoretical validation is not clear at present.

B. (FD)2TD Methods

Although the (FD)2TDs have widely been used to analyze
plasmonic structures, their applications to the analysis of the
SPR sensors have been limited to only a few cases of the
conventional Kretschmann structures. In particular, the wave-
length responses of the waveguide-based SPR sensors have not
been investigated using the FDTD, in spite of the fact that
the wavelength response can be obtained by one-time solution
using the pulse excitation scheme. Note that the FDTD analysis
can be performed even in the case of a small incident angle θ
(see Fig. 1), to which the BPM cannot be applied. These facts
encourage us to examine the application of the (FD)2TDs,
although they require computational efforts relative to the BPM.

In this paper, we perform the analysis using the (FD)2TDs
based on the RC and PLRC techniques for the Drude model
dielectric function (1). It is assumed that, for the RC technique,
the electric field is constant over ∆t, while, for the PLRC
technique, the electric field has piecewise linear functional de-
pendence over ∆t. Therefore, the PLRC technique may achieve
better accuracy than the RC technique.

For the PLRC–FDTD, the update equation for the E field in
the metal is expressed as

En+1 =
ε∞ − ξ0

ε∞ + χ0 − ξ0
En +

1
ε∞ + χ0 − ξ0

φn

+
∆t/ε0

ε∞ + χ0 − ξ0
∇× Hn+1/2 (3)

where

φn =
(
∆χ0 − ∆ξ0

)
En + ∆ξ0En−1 + e−νc∆tφn−1

χ0 =
ω2

p

νc

[
∆t − 1

νc

(
1 − e−νc∆t

)]

∆χ0 = −
ω2

p

ν2
c

(1 − e−νc∆t)2

ξ0 =
ω2

p

νc

[
∆t

2
− 1

ν2
c ∆t

(1 − e−νc∆t) +
1
νc

e−νc∆t

]

∆ξ0 = −
ω2

p

ν2
c

[
1

νc∆t

(
1 − e−νc∆t

)2 − (1 − e−νc∆t)e−νc∆t

]

with ε∞ = 1 for a Drude model. To obtain the H field, the
standard update equations are used. Note that (3) reduces to
the RC technique for ξ0 = 0 and ∆ξ0 = 0. In this paper, we do
not use the envelope formulation, so that we treat the total field
with an optical carrier.

In the application of the (FD)2TDs, we should pay attention
to the choice of ωp and νc at the metal–dielectric interface. In
the following simulation, we place the interface on the electric
field component and derive ωp and νc at the interface from the
averaged relative permittivity between the metal and dielectric
materials.

IV. ANALYSIS OF A WAVEGUIDE-BASED SPR SENSOR

We now study the wavelength response of the sensor, varying
the wavelength from 0.50 to 0.70 µm. The refractive index
of the metal is determined from (1) at a given wavelength. In
the analysis using the complex-Padé-based BPM discussed in
Section III, n̄0 is chosen to be nTM cos 78◦, and ρ is taken
to be −2◦ for the metal region and 0 for the waveguide and
analyte regions. For the FDTD, taking advantage of the time-
domain analysis, we use the pulse excitation scheme to obtain
the wavelength response, in which the center wavelength of the
input pulse is 0.600 µm, and its bandwidth spans 0.34 µm in
the 1/e full width that is wide enough to calculate the relatively
narrow wavelength range in Fig. 2.

Fig. 2 shows the wavelength response of the normalized
output power from waveguide 2 for na = 1.330, in which
Fig. 2(a)–(c) represent the results for the BPM, RC–FDTD, and
PLRC–FDTD, respectively. To investigate the convergence of
the numerical results, we calculate the responses for the several
spatial sampling widths. In Fig. 2(a), the BPM yields almost
the same wavelength responses for the two cases. In contrast,
the responses obtained from the RC–FDTD and PLRC–FDTD
gradually shift rightward with a reduction in sampling widths.
It is also seen that the wavelength responses from the
RC–FDTD are not sharper than those from the BPM and the
PLRC-FDTD.

Here, we pay attention to the maximum absorption wave-
length. Fig. 3 depicts the absorption wavelength for each
method as a function of ∆x. It is seen that, as ∆x is reduced,
the absorption wavelengths approach specific values. Note that,
for the FDTDs, the results are shown for ∆x ≥ 0.0075 µm
due to the limit of the computational memory. Therefore, the
convergence with respect to the sampling width has not been
obtained for the FDTD results. To further investigate the effect
of the sampling widths on the wavelength response, we next
discuss an extrapolated value of the maximum absorption
wavelength. To obtain the extrapolated value, we derive the
second-order function using the two successive values of the
absorption wavelengths, i.e., the values with ∆x=0.005 and
0.0075 µm are used for the BPM, and those with ∆x = 0.0075
and 0.009 µm are used for the FDTDs. In addition, the
extrapolated value at ∆x = 0 for each method is shown as
a straight line. It is found that the extrapolated value of the
PLRC–FDTD (0.6088 µm) agrees well with that of the BPM
(0.6094 µm), while the value of RC-FDTD shows a slight
overestimation (0.6108 µm).
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Fig. 2. Wavelength response for (a) BPM, (b) RC–FDTD, and
(c) PLRC–FDTD. ∆z = ∆x tan θ/2.5.

Fig. 3. Maximum absorption wavelength as a function of sampling width.
∆z = ∆x tan θ/2.5. For the FDTDs, we only show the results for ∆x ≥
0.0075 µm, due to the limit of the computational memory.

Further calculations using the results in Fig. 3 readily show
that each method is spatially second-order accurate, even in
the presence of the metal. Note, however, that the error of the
FDTD is larger than that of the BPM by an order of magnitude,

Fig. 4. Extrapolated wavelength response. The result obtained from the
Fresnel equation approach is also included.

as expected in Fig. 3. This is due to the fact that the FD equation
for the material interface in Yee’s mesh coincides with Stern’s
formula [21], [22], whose accuracy is slightly less than that
of the modified second-order FD formula used in the BPM
[20]. As a result, the difference in the error is attributed to the
accuracy of the FD equation to be used.

The convergence of the numerical result is studied not only
for the absorption wavelength discussed previously but also
for the other wavelengths. The overall spectral range of the
response shown in Fig. 2 is extrapolated in Fig. 4. It can be seen
that the response of the PLRC–FDTD is in close agreement
with that of the BPM. In contrast, the RC-based result deviates
from the others. Consequently, the BPM results are validated in
comparison with the FDTD results. Besides, the RC technique
induces an appreciable error, and the PLRC technique is neces-
sary in terms of the accuracy of the numerical results.

Note that the conventional Kretschmann-based SPR sensor
has been modeled using the three-layer Fresnel equation
approach [23], [17]. In Fig. 4, the result of the Fresnel approach
is also included, in which the waveguide region (x < 0) is
assumed to be a homogeneous medium [7]. The maximum
absorption wavelength is calculated to be 0.6038 µm, which
is in reasonable agreement with the wavelengths obtained
from the BPM and the FDTDs. However, the Fresnel approach
cannot fully predict the wavelength response of the present
SPR sensor, as shown in Fig. 4, since the approach is based
on plane wave incidence, which cannot treat an angular spread
of the incident beam of the present SPR sensor structure.
Although not illustrated, widening the core width of the present
sensor results in a sharper wavelength response since the
angular spread of the incident beam becomes narrower.

Fig. 5 shows the maximum absorption wavelength of the
present SPR sensor as a function of na, in which the BPM
is adopted due to its computational efficiency. Note that the
extrapolated values are shown in Fig. 5. It is clear that the
maximum absorption wavelength depends on na, in which
the wavelength shifts from 0.609 to 0.623 µm, when the
refractive index of the analyte na increases by 0.004 units. This
large shift is almost identical to that of the conventional sensor
based on the Kretschmann configuration [2] and is detectable
by an optical spectrum analyzer.

The field distribution at a maximum absorption wavelength
of 0.609 µm for na = 1.330 is shown in Fig. 6(a), which is
calculated using the BPM. It is observed that the SPP wave
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Fig. 5. Maximum absorption wavelength as a function of analyte index na.

Fig. 6. Field distributions for na = 1.330 obtained from the BPM. (a) λ =
0.609 µm and (b) λ = 0.5 µm.

is excited along the metal–analyte interface, and its amplitude
is rapidly attenuated with the leaky wave generated in the region
for x < 0. This results in a minimum reflectivity of 0.02%.
In contrast, when λ is shifted from the maximum absorption
wavelength, e.g., at λ = 0.5 µm, most of the power is reflected
(88%), as shown in Fig. 6(b).

From Fig. 6(a), it can be seen that the SPP wave starts
to appear around z = 85 µm and almost disappears around
130 µm. This short sensing length contributes to a reduced
amount of the analyte, when compared with the conventional
waveguide-based sensors, in which the sensing section is
typically 2 mm in length [5], [6]. In addition, the present
sensor shows a narrow spatial profile of the incident beam, i.e.,
the full-width at half-maximum of the beam is calculated to

be 3.8 wavelengths at 0.633 µm, while for the Kretschmann
configuration, it is said to be 7.4 wavelengths [17]. Taking
advantage of this narrow profile of the waveguide-based sensor,
we expect to reduce the interaction between the sensors when
they are vertically stacked for multichannel sensing. The
application to 3-D models of multichannel waveguide-based
sensors is an interesting subject and is left for future study.

V. CONCLUSION

We have numerically investigated a Kretschmann-type SPR
waveguide sensor in the frequency and time domains. The RC
and PLRC techniques have been applied to the time-domain
analysis of the SPR sensor, and their results have been com-
pared with those of the wide-angle BPM with the complex
Padé approximant. After explaining the numerical methods
that were used, we calculate the wavelength responses of the
waveguide sensor and study the convergence of the numerical
results. A close correspondence is found between the BPM and
PLRC–FDTD results, showing the validity of the BPM results
and the necessity of the PLRC technique in terms of accuracy.
It is also shown that the Fresnel equation approach, which is
frequently used for modeling the conventional Kretschmann-
based sensor, cannot fully predict the wavelength response
of the present waveguide sensor. The waveguide sensor ex-
hibits the sensitivity comparable to that of the conventional
Kretschmann-based sensor and therefore could be a potential
candidate for an SPR sensor that is integrated into optical
circuits. A Kretschmann-type SPR waveguide sensor with a
sharper dip in wavelength response is now under study.

APPENDIX

COMPARISON OF THE WAVELENGTH RESPONSE USING

MEASURED REFRACTIVE INDEXES OF THE METAL

AND THAT USING THE DRUDE MODEL

In this paper, we have investigated the wavelength responses
of the waveguide-based SPR sensor with the help of the Drude
model for the material dispersion of the metal. Here, we com-
pare the response using the measured refractive indexes of the
metal available in [24] and that using the Drude model that was
determined with one of the measured refractive indexes. The
complex Padé-based BPM is used to analyze the same sensor
structure as that in Fig. 1, except for the refractive index of
the metal.

Fig. 7 shows the wavelength response for na = 1.330. The
black circles indicate the responses that were obtained using
the measured refractive indexes, in which the data for the
imaginary parts of the refractive indexes are missed around
0.6 µm in [24]. To show the overall wavelength response,
we use the interpolated refractive indexes that were obtained
from available values. The overall response is indicated by the
broken line. The black line represents the response based on
the Drude model, in which one of the measured indexes, i.e.,
nm = 0.166 − j3.15 at 0.6526 µm, is used for (1). Note that
the maximum absorption wavelengths in Fig. 7 shift toward
longer wavelengths, compared with the wavelength discussed
in Section IV. This is caused by the difference of the refractive
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Fig. 7. Wavelength response.

indexes that were used for each case, which affects the reso-
nance condition of the SPP wave.

It is seen that the maximum absorption wavelength using
the Drude model (solid line) is in reasonable agreement with
that using the interpolated value (broken line). Nevertheless,
the response of the former does not perfectly follow that of
the latter one. This is due to the fact that the Drude model
cannot fully describe the measured refractive indexes, par-
ticularly at the shorter wavelengths [25]. To obtain a more
accurate description of the dispersion of the metal, the ex-
tended Drude model with an additional Lorentzian term may be
used [25], whose applications to waveguide-based SPR sensors
in both frequency and time domains will be addressed in
future work.
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