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Abstract—A novel Yee-mesh-based finite-difference full-
vectorial beam-propagation method is proposed with the aid of an
implicit scheme. The efficient algorithm is developed by splitting
the propagation axis into two steps. The eigenmode analysis
of a rib waveguide is performed using the imaginary-distance
procedure. The results show that the present method offers re-
duction in computational time and memory, while maintaining
the same accuracy as the conventional explicit Yee-mesh-based
imaginary-distance beam-propagation method. It is demonstrated
by the analysis of a polarization converter that the present method
can be used for not only the eigenmode analysis but also the
propagating beam analysis.

Index Terms—Beam-propagation method (BPM), eigenmodes,
finite-difference methods, imaginary-distance procedure, implicit
schemes, optical waveguides, Yee’s mesh.

I. INTRODUCTION

EVALUATION of the modal characteristics of an optical
waveguide by numerical analyses is an important issue

in the design of photonic integrated circuits. To date, various
numerical methods have been proposed for the issue [1]–[4].
One of them is the Yee-mesh-based imaginary-distance beam-
propagation (BPM) method developed by Lee [4], [5]. This
method has the advantage that the obtained eigenmode profiles
can be utilized as an incident field of the finite-difference
time-domain (FDTD) method, since all the electromagnetic
field components located on Yee’s mesh are simultaneously
analyzed [6].

The Yee-mesh-based imaginary-distance BPM is an ex-
plicit scheme owing to the formulation of directly discretizing
Maxwell’s equations. We refer to this method as EY-BPM.
Because of the explicit scheme, the sampling width in the
propagation direction must be sufficiently small as com-
pared with those in the transverse ( and ) directions so that
a stability condition may be satisfied. This leads to decrease
in computational efficiency. More unfortunately, the EY-BPM
cannot be used in the propagating beam (real-distance) analysis.

On the other hand, the conventional BPM, which is not based
on Yee’s mesh, is formulated using a Fresnel equation. The
Crank–Nicolson (CN) scheme is often applied to the discretiza-
tion in the direction of the Fresnel equation. Therefore, the
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BPM becomes an implicit scheme, leading to unconditional sta-
bility. As a result, we can perform efficient computation in both
eigenmode and propagating beam analyses. However, for the
conventional BPM, the behavior of all the electromagnetic fields
cannot be simultaneously analyzed due to the fact that the for-
mulation is based on the wave equation of either an electric or
magnetic field.

The use of Yee’s mesh is useful for simultaneously evaluating
electric and magnetic field components, and the application of
the CN (implicit) scheme is necessary for efficient computa-
tion in both eigenmode and propagating beam analyses. When
Fresnel-type equations with both electric and magnetic fields
are derived, it is expected that the efficient scheme is obtained.
However, no attempt has been made for the derivation of the
Fresnel-type equations with both electric and magnetic fields.

From this viewpoint, we have recently described the possi-
bility of deriving an implicit Yee-mesh-based finite-difference
full-vectorial BPM for the analysis of optical waveguides [7].
In this paper, we present its formulation in detail and show the
effectiveness of the present method in both eigenmode and prop-
agating beam analyses.

After deriving finite-difference equations, we perform the
eigenmode analysis of a rib waveguide using the imagi-
nary-distance procedure. The efficient algorithm is developed
by splitting the propagation axis into two steps. The results
reveal that the present method offers reduction in computational
time and memory, while maintaining the same accuracy as the
conventional EY-BPM. Moreover, the higher order mode is
computed using a full-vectorial Gram–Schmidt orthogonaliza-
tion technique. Finally, it is demonstrated through the analysis
of a polarization converter that the present method can also be
used for the propagating beam analysis.

II. FORMULATION

A. Fresnel-Type Equations

We consider a linear lossless dielectric medium. The formula-
tion begins with normalized Maxwell’s equations in a frequency
domain [8]

(1)

(2)

(3)

(4)

where is the free-space wavenumber and is the relative
permittivity. As a preliminary to the derivation of Fresnel-type
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equations, (1) and (2) are differentiated with respect to . Sub-
stituting (3) and (4) into the obtained equations, we get

(5)

(6)

(7)

(8)

where

with . Note that the change of the waveguide struc-
ture in the direction is assumed to be small, i.e.,
(this assumption is completely satisfied for the eigenmode anal-
ysis with the imaginary-distance procedure).

We now express the transverse ( or ) electromagnetic field
component as

(9)

where is the field component with the slowly varying
envelope function of ) is the reference propaga-
tion constant representing the fast-varying spatial phase, and
is the reference index. After applying (9) to (5)–(8) and elim-
inating the second derivatives with respect to by the slowly
varying envelope approximation

we obtain the following Fresnel-type equations

(10)

(11)

(12)

(13)

where

B. Finite-Difference Equations

We next derive the finite-difference equations of the Fresnel-
type equations. Splitting the propagation axis into two steps,
(10)–(13) can be written as

[first step]

(14)

(15)

(16)

(17)

[second step]

(18)

(19)

(20)

(21)

where and is the sampling width in the di-
rection. Note that in means

. The CN scheme is applied to (14)–(21),
and the derivatives in the transverse directions are discretized by
the central finite difference. As a result, the first-step equations
become

[first step]

(22)

(23)

(24)

(25)

where

and are the difference operators
(see Appendix). Interestingly, the finite-difference equation of

or based on Yee’s mesh coincides with Stern’s formula
[9]. The discretized forms of the mixed derivatives appear to be
equivalent to those derived by Huang and Xu [10]. However,
since Yee’s mesh is employed, they differ from those in [10]
in that the relative permittivity at an interface and a corner is
naturally given by the average of the neighbor ones [11].
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It should be noted that (22) and (25) form simultaneous
equations with unknowns of and .
They can, therefore, be solved by a substitution technique.
Once and are determined, they are
substituted into (23) and (24), resulting in simultaneous equa-
tions with unknowns of and , which
can again be solved. As a result, we obtain

[first step]

(26)

(27)

(28)

(29)

Similar procedures are also made for the second step so that
we finally obtain

[second step]

(30)

(31)

Fig. 1. Configuration of a rib waveguide.

(32)

(33)

In the present method, the above two-step equations are
solved, updating the solution in the direction. Efficient com-
putation can be carried out by the Thomas algorithm [14] since
(26), (28), (31), and (33) are tridiagonal systems of equations.
The others are explicitly solved. Eventually, the calculation is
performed with the following process:

III. EIGENMODE ANALYSIS

A. Confirmation of Validity

In order to confirm the validity of the present method, we per-
form the eigenmode analysis using the imaginary-distance pro-
cedure [2], [15], [16]. The imaginary-distance procedure is a
method to extract modal profiles by replacing the real axis
with the imaginary axis . In the procedure, the propagation
constant can be calculated by (34), shown at the bottom of the
page, in which the weighting function is adopted
to minimize numerical error [4]. Moreover, a technique for suc-
cessively updating at each propagation step is used [11].

We choose the rib waveguide illustrated in Fig. 1, which is
well known as a classical benchmark [3]. The configuration pa-
rameters are 3.0 m, 1.0 m,
and 0.5 m. The wavelength is taken to be 1.15 m.
The sampling width in the propagation direction is chosen to

(34)
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Fig. 2. Normalized propagation constantB versus transverse sampling width.

be 1.0 m. The transverse sampling width is defined
as . The computational domain is fixed to be

m m.
For the eigenmode analysis based on the imaginary-distance

procedure, we can use various boundary conditions at the
edge of the computational region. Needless to say, absorbing
boundary conditions, such as the transparent boundary con-
dition [12] and the perfectly matched layers (PMLs) [13], are
effective for efficient computation. Nevertheless, in this section,
we intentionally use the Dirichlet condition to fairly
compare several methods, since the computational time and
memory are often affected by the boundary conditions to be
used. Note that the PML will be used in Section IV.

As a measure to evaluate the validity of the present method,
we utilize the normalized propagation constant defined as

, where is the effective
index.

Fig. 2 shows as a function of for quasi-transverse electric
(TE) and quasi-transverse magnetic (TM) modes. For compar-
ison, the results obtained from the conventional EY-BPM and
the modal transverse resonance method (MTRM) [3] are also
shown in Fig. 2 (note that the four-digit values of the MTRM
are believed to be exact [3]). From the figure, we can see that
the result of the present method agrees well with that of the con-
ventional EY-BPM. Furthermore, it is found that obtained by
the present method approaches that given by the MTRM as is
decreased. For the conventional EY-BPM, must be selected
in such a way that the stability condition is satisfied. The sta-
bility condition is in the three-dimensional anal-
ysis [4]. In this paper, is set to be the upper limit of the
stability condition.

The effects of on the numerical convergence are presented
in Fig. 3, in which is fixed to be 0.05 m. It is found that the
convergence rate becomes faster as is increased. For the ex-
plicit scheme, however, we cannot choose a larger due to the
exsistence of the stability condition ( 0.035 m is the upper
limit). It is worth mentioning that the implicit scheme allows us
to employ a larger with subsequent faster convergence.

B. Effectiveness of Splitting the Propagation Axis

In the present method, the propagation axis is split into two
steps in order to obtain the tridiagonal systems. In this section,
we also present finite-difference equations without splitting and
investigate the effect of splitting the propagation axis on accu-
racy and efficiency in order to validate the splitting procedure.

Here, each method is called a split-type or unsplit-type method,
depending on whether the propagation axis is split or not.

We summarize the unsplit-type method. Directly discretizing
(10)–(13) by the central finite difference with the CN scheme,
we obtain

(35)

(36)

(37)

(38)

where

For the unsplit-type, the solution can be updated by a single
step unlike the split-type. It should be noted, however, that the
bandwidth of the matrix is large. The matrix is calculated using
the Bi-CGSTAB [17], resulting in a computational penalty, as
will be seen in Fig. 5.

Fig. 4 denotes the error of against for the quasi-TE and
quasi-TM modes. The evaluation of the error is made by the dif-
ference between the calculated value and the extrapolated
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Fig. 3. Normalized propagation constant B versus the number of steps.

Fig. 4. Error of the normalized propagation constant versus the transverse
sampling width.

Fig. 5. Computational time versus the sampling width in the propagation
direction.

value considered as a true value. Good agreement is found
between the results of the two (split- and unsplit-type) methods.
Besides, it is clear that both methods ensure second-order ac-
curacy. From the above results, it is concluded that the splitting
procedure does not affect the accuracy of this analysis.

Next, we compare the computational time in order to re-
veal the effectiveness of splitting the propagation axis. Fig. 5

Fig. 6. Memory versus the number of total sampling points.

presents the computational time necessary to the convergence
of versus , in which is fixed to be 0.05 m. The
calculation is carried out using the computer with a Pen-
tium 4 2.26 GHz processor. The computational time of the
Bi-CGSTAB depends on a tolerance factor for convergence. To
yield stable results, the tolerance factor is set to be . As
expected, the computational time of the split-type is smaller
than that of the unsplit type. When compared with the result
of the conventional EY-BPM, the split-type is somewhat time
consuming for the use of the same . However, we can choose
larger since the stability condition is removed in the split
type. As a result, the computational time of the split type is
reduced to in comparison with that of the conventional
EY-BPM. Here, the computational time is defined as the time
when the difference among s obtained from the four elec-
tromagnetic field components becomes less than or equal to

. In this case, s calculated from the major components
converge to a six-digit precision.

We finally investigate the memory requirement. Fig. 6 shows
the required memory as a function of the number of total sam-
pling points. It is found that the split type requires less memory.
This is because the and components are transformed into
the , and components.
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Fig. 7. Field profiles of the second-order quasi-TE mode.

C. Higher Order Modes

The fundamental modes of the rib waveguide have been
treated in the above discussion. In this section, we extend
the present method to the analysis of higher order modes. The
higher order modes can be determined using the Gram–Schmidt
orthogonalization technique, as follows:

(39)

where

is the field profile of the higher order eigenmode
to be extracted, is the field distribution of the th lowest
order eigenmode, is the unit vector in the direction, and *
denotes the complex conjugate. The th mode is generated
by subtracting the lower order eigenmodes .
Note that a similar expression is also used in [18] and [19].

We again analyze the rib waveguide shown in Fig. 1. The rib
width is changed from 3.0 m to 6.0 m so that the
second-order mode may be supported. The transverse sampling
width is 0.05 m. The other parameters are identical with
those shown in Section III.

Fig. 7 illustrates the field profiles of the second-order
quasi-TE mode. Each electromagnetic field is normalized to
the main component . From the figure, we can see that the
second-order mode profiles are successfully calculated.

Fig. 8. Geometry of a polarization converter.

Fig. 9. Guided-mode power as a function of propagation distance.

IV. PROPAGATING BEAM ANALYSIS

The present method has the advantage that it can be applied
to not only the eigenmode analysis but also the propagating
beam analysis. In this section, the periodically loaded wave-
guide illustrated in Fig. 8, which is operated as a polarization
converter, is analyzed as an example. Note that the device can
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Fig. 10. Field profiles of the fundamental TM-like mode.

be geometrically expanded on the basis of a frequency transfor-
mation from optical to microwave frequencies. Therefore, the
operating wavelength is taken to be 20 mm, which is deter-
mined by the previous experimental investigation [20]. The rel-
ative permittivity of the dielectric rod and loadings is .
The dimensions of the plane of the rod are fixed to be

mm mm. The width and thickness of
the loading are 6.5 and 2.0 mm, respectively. The
loading length is 127.0 mm.

The sampling widths are chosen to be 0.5 mm and
1.0 mm. The number of transverse sampling points is

. The PML is employed to absorb outgoing
waves at the edge of the computational domain. The rod is ex-
cited with the (TE) mode whose field profiles are obtained
with the imaginary-distance procedure. It is expected that the

mode is progressively converted into the (TM) mode
as the wave propagates along the polarization converter.

Fig. 9 represents the guided-mode power as a function of
propagation distance . The guided-mode power is normalized
to the excited mode power. Almost complete polarization
conversion is obtained at 635 mm. For comparison, the
data calculated by the finite-difference time-domain (FDTD)
method and the full-vectorial BPM with the improved finite-dif-
ference formula (IFD-BPM) [11] are presented using dotted and
dashed lines. It is seen that the result of the present method
agrees with those of the FDTD method and IFD-BPM. To be
exact, the guided-mode power obtained from the present method
and IFD-BPM is slightly smaller (approximately 1.4 dB) than
that of the FDTD method. We should recall, however, that the

Fig. 11. Yee’s mesh.

BPMs are much more efficient in terms of computational time
and memory than the FDTD method [20].

To validate a conversion length of 635 mm, we calculate the
eigenmodes of the polarization converter. The Gram–Schmidt
orthogonalization technique is again used to obtain the TM-like
mode, since its propagation constant is smaller than that of the
TE-like mode. More specifically, we first calculate the TE-like
mode field, which has the largest propagation constant, and
then the TM-like mode field is calculated, while subtracting the
previously determined TE-like mode field. As an example, the
fields of the TM-like mode are displayed in Fig. 10. From the
obtained propagation constants ( and ), we can eval-
uate the conversion length from .
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(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

It is confirmed that the evaluated conversion length (635 mm)
is identical with that observed in the propagating beam analysis
in Fig. 9.

Finally, we check the accuracy of the present method using
the Y junction splitter considered in [21], [22]. Since the splitter
is a longitudinally variant waveguide, we adopt an index aver-
aging technique. Calculation shows that the difference between
the present and FDTD methods in the normalized power of the
lowest order local normal mode is within for both
and modes. We should, however, note that the present for-
mulation is based on the Fresnel-type equations, so that the ac-
curacy will be lost, as the longitudinal variation of the wave-
guide becomes large and the propagating field varies rapidly. In
the present Y-junction splitter, an average half-branching angle
is around 3 . Further calculation shows that the error becomes
large as the branching angle is increased. Roughly speaking,
the branching angle must be less than 5 to maintain reason-
able accuracy.

V. CONCLUSION

An implicit Yee-mesh-based finite-difference full-vectorial
beam-propagation method (BPM) has been proposed for the
eigenmode and propagating beam analyzes of optical waveg-
uides. We first discuss the formulation in detail and then per-
form the eigenmode analysis of a rib waveguide with the imag-
inary-distance procedure. After confirming the validity of the
present method, it is revealed that the computational time of the
present method is reduced to in comparison with that of
the conventional explicit Yee-mesh-based imaginary-distance
BPM, with the required memory also being reduced. Further-
more, the higher order mode is generated using the full-vec-
torial Gram–Schmidt orthogonalization technique. Finally, it is
demonstrated through the analysis of a polarization converter
that the present method can be used for not only the eigenmode
analysis but also the propagating beam analysis.

APPENDIX

Referring to Fig. 11, we express the difference operators as
(40)–(47), shown at the top of the page, where
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