法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-07-30

気液放電によるフェノール分解及びアミノ酸 合成

HONDA, Fumitaka / 本田, 文敬

(発行年 / Year) 2009-03-24 (学位授与年月日 / Date of Granted) 2009-03-24 (学位名 / Degree Name)

修士(工学) (学位授与機関 / Degree Grantor) 法政大学 (Hosei University)

2008年度 修士論文

指導教授 西海英雄

気液放電を用いたフェノール分解及びアミノ酸合成

PHENOL DECOMPOSION AND AMINO ACID SYNTHESIS BY VAPOR-LIQUID DISCHARGE

法政大学大学院 工学研究科 物質化学専攻 修士2年

07r2114 本田 文敬 Fumitaka Honda

ABSTRACT

We found a normal discharge method in water by one electrode in a vapor phase and the other in a liquid phase. It worked well at lower electric voltage than conventional voltage of break down in water. Minimum voltage to discharge was 6kV which decomposed phenol. We have found to improve initial phenol decomposition reaction rate specifically under the atmosphere of 3-6%He or 2-8%N₂.It seems to be caused by the Penning effect. In water, we obtained possible amino acid by vapor-liquid discharge in an atmosphere of carbon dioxide and nitrogen.

要旨

本研究室では一方の電極を気相側にもう一方の電極を液相側に設置する事によって水中放電を 容易に起こせる事を発見した。その方法は通常の水中放電よりも低い電圧で実行された。その最 低電圧は 6kV でありフェノールを分解した。さらに本研究室では 3-6%He もしくは 2-8%N₂大気 雰囲気下でフェノールの初期分解反応速度定数を特異的に向上する事を発見した。それはペニン グ効果により引き起こされたと考えられる。また二酸化炭素と窒素からなる大気中に気液放電を 用いることによってアミノ酸の可能性のある物質を合成した。

目次

I.気液放電を用いたフェノール分解及びアミノ酸合成

緒言	6
1.理論	
1.1. 放電開始理論 ¹⁾	7
1.1.1 励起・準安定励起状態・電離	7
1.1.2.電離電圧係数 と初期電子	9
1.1.3.放電開始条件	11
1.1.4.Passion の法則	
1.1.5.Pennig 効果	
1.2.液相放電	
1.2.1.泡理論 ²⁾	
1.2.2.真正破壊	
1.2.3.前駆ストリーマー	
1.3.気液放電	
1.4.放電反応を用いた酸化的雰囲気下でのアミノ酸合成	
1.4.1 還元的雰囲気下でのアミノ酸合成	
1.3.2.酸化的雰囲気下に放電反応を用いたアミノ酸合成	
2章 フェノール分解実験	
2.1.実験器具と試薬	
2.2.実験装置	
2.2.1 実験装置図	
2.2.2.電極間条件	
2.2.3.反応セル	
2.2.4.気液放電写真撮影	
2.2.5.電圧印加準備	
2.2.6 出力電圧	
2.3 結果	
2.3.1.フェノール濃度変化	
2.3.2.フェノール分解反応における中間生成物	

2.3.3.反応速度定数の分析	
2.3.4.電極間距離への依存性	
2.3.5 圧力の依存性	
2.3.6 ガス種の影響	
3章 アミノ酸合成への応用 ⁵⁾	53
3.1.実験器具と試薬	
3.2 実験装置	
3.2.1 超高温・高圧パルス実験装置	
3.4.実験方法	
3.4.1 実験装置操作	
3.4.2 ニンヒドリン反応	
3.5 実験結果	
3.5.1.ニンヒドリン結果	
3.5.2.GC-MS 結果	
.水の架橋現象に関する不純物の影響	62
要旨	64
1.理論	65
1.1.水の電気双極子	
1.2. The floating water bridge	
2.実験方法	
3 実験	67
3.1 電圧への依存性	
3.2 Water Bridge の流れる方向	
3.2.1.陽極側電気伝導度上昇条件	
3.2.2.陰極側電気伝導度上昇条件	
3.3.不純物への依存性	
3.3.1.不純物への依存性	
3.3.2.不純物の影響因子	
3.3.3.アルミナの影響	
結言	
APPENDIX	

I.気液放電によるフェノール分解及びアミノ酸合成

緒言

ユーリー・ミラーの実験で、当時原始大気成分だと考えられていたメタン、水素、アン モニア、水蒸気といった還元的環境中で火花放電を起こすことにより4,5種のアミノ酸(グ リシン、アラニン、アスパラギン酸、バリン)が合成されることが判明している。これら のアミノ酸が生命の起源となっているのではないかと当時考えられた⁵⁾。近年調査が進み原 始時代の環境は、高温・高圧の酸化的環境であったことが判明した。海中には火山があり、 海底火山付近は擬似的な超臨界水であったと考えられる。

そして今回考案する気液放電を二酸化炭素及び窒素大気条件下に用いることによってア ミノ酸を大量合成できれば人口増加問題を解決するかもしれない。そこで今回は気液放電 の特性を掴み気液放電の持つ可能性を探求する。

1.理論

1.1. 放電開始理論¹⁾

陰極と陽極からなる管状に圧力 p のある気体を封入した放電管を考える。両電極に電圧を 加え徐々に上げていくと、検出できないくらいの微弱な電流からある電圧値で突発的に増 大し、管内は発光する。これが放電開始でその電圧値を放電開始電圧という。その機構に 関して考察する。

1.1.1 励起・準安定励起状態・電離

分子内部を変えるほどのエネルギーの高くない時の衝突は弾性衝突である。逆に電子エネ ルギーが高くなって分子と衝突し、その内部変化を起こすときは非弾性衝突である。そし て放電は弾性衝突の繰り返しによりエネルギーを増大させ非弾性衝突へと移行した際に生 じる現象である。放電反応における分子内部変化は最外殻にある電子の変化が大部分で、 より内部の核に及ぶことは稀で、勿論原子核の変化はない。図 1.1 にその概要を示す。図 1.1-(a)は非弾性衝突一般を示し、衝突した1次電子は分子が起こす内部エネルギー変化分を 失うことになる。図 1.1-(b)上は最外殻電子がエネルギーを得てその軌道がふくらむ様子で ある。このふくらみは連続でなく、量子的に飛び飛びの物質固有の軌道で、そのいずれか に入る。この膨らんだ状態にあるとき励起状態という。この励起状態は非常に不安定で普 通 10⁻⁸sec 位で安定状態に戻ってしまう。この時に図 1.1-(b)下のように軌道間のエネルギー 差に相当するエネルギーを電磁波(光)として放射する。これが放電の発光である。

励起準位の中にはかなり長時間(10⁻²-10⁻¹sec)安定にとどまるものがあってこれを準安定励 起状態という。さらに励起準位以上の値になると、分子を離れ自由電子となって飛び去り、 分子はイオンになる。これを電離という。電離を起こすエネルギーを電圧で呼び電離電圧 という。表1にいくつかの原子の準安定励起電圧、電離電圧を記す。

原子		電離電圧[eV]	原子番号[-]
Н		13.59	1
He	19.8/20.96	24.58	2
Ne	16.62/16.72	21.55	10
Ar	11.53/11.72	15.75	18
Kr	9.82/10.51	13.96	36
Xe	8.28/9.40	12.12	54
Li		5.39	3
Cs		3.87	55
Hg	4.67/5.47	10.42	80
Ν		14.51/15.58(N ₂)	7
0		13.57/12.07(O ₂)	8

表1

1.1.2.電離電圧係数 と初期電子

電子エネルギーが電離電圧以上になるとある確率により電離を起こすが。放電現象に重要 な因子は確率を含んだ記号 で表す電離係数である。この の定義は 1 個の電子が電界方 向に単位長さ(1cm)進む時に起こす電離数である。図 1.2-(a)に示してある状態で一度電離す るとイオンの他に電子も一個増し次々に増加していく。距離 x における電子密度を n とお くと微小距離 dx 間に増す電子量 dn は n dx になる。 すなわち、

 $dn = \alpha n dx$

この積分を行い、初期条件 x=0 で n=1 とすると

 $n = e^{\alpha x}$

となる。この指数関数で増加していく電子増加を「電子雪崩」図 1.1.2-(b)という。

図 1.2-(c)のように平均自由行程 eの距離で考えると

e を進む間の電離数...
$$\alpha \lambda_e = \frac{\alpha}{p} \lambda_{e0}$$

e 進んで電界から得るエネルギー… $V_e = E\lambda_e = \frac{E}{p}\lambda_{e0}$

発生する電離数は Ve の関数だから次式が導かれる。

$$\frac{\alpha}{p} = f\left(\frac{E}{p}\right)$$

(a)初期電子と電離数

(b)電子雪崩

(c)

図 1.2 初期電子、電離係数、電子雪崩、 と E の関係

1.1.3.放電開始条件

図は電子雪崩が陽極に達した瞬間である。電子はみな陽極に入り、遅いイオンは空間に残 っている。しかし電界により陰極に加速される。そして陰極面から二次電子を引き出す。 イオン一個で二次電子を放出する割合を とおく。この は陰極材料とイオンの種類によ ってきまる定数とみなされる。

さて図 1.3-(a)のように雪崩 e^d に対してイオン数は最初の1個だけ少ないから(e^d-1)個で ある。そこで図 1.3-(b)のように二次電子が一個以上なら電子雪崩は初期電子に関係なく続 いて増加する。これが放電開始である。従って放電開始条件は(1)外からの作用で初期電子 があること。(2)1回の電子雪崩で生じたイオンにより1個以上の2次電子を放出。以上2つ の項目を満たすことである。

(a)一回の電子雪崩に生じるイオン数

(b)イオンによる二次電子放出

1.1.4.Passion の法則

平等電界中の火花放電開始電圧 Vs[V]は、一定温度の気体において気圧 p[mmHg]と電極の間 隔 d[m]の積 pd の関数になることをパッシェンが実験的に見出した。つまり Vs=f(pd)となり、 これをパッシェンの法則という。図 1.4 にその実例を示す¹⁾。

図 1.4 Passion 曲線

Vs の曲線は上に示すように V 字型となり、ある pd の値において Vs は最小となる。これは 次のように説明できる。pd の値が小さいときには、気体分子が少ないため衝突が起こりに くくなるために十分な電離が起こりにくい。反対に pd の値が大きいときには、p が大きい と気体分子間の衝突間の距離(自由行程)が短くなるため電子が衝突までに十分に加速さ れにくくなるので、電子の運動エネルギーが減少してしまう。また、d が長くなるとその分 だけ高い電圧が必要となる。そのため、pd の値が小さすぎても大きすぎても Vs の値は大き くなる

1.1.5.Pennig 効果

放電開始電圧(Vs)は昔から非常に多く調べられてきた。その多くの実験から同じ気体と陰極 材料に対し、ガス圧 p と電極間距離 d の積 pd に対して Vs をプロットすると一つの曲線に なった。これが前述に示したパッシェン曲線である。それをガス種類別にまとめたのが図 1.5 である¹⁾。ここで注目したいのが Ne に 0.1%の Ar を混入したことで、Ne と Ar 各単一ガ スの時より pd 値によっては Vs が 1/10 に低下する。これは第二段階電離として知られるペ ニング効果のために生じると考えられている。

図 1.5 ペニング効果

図 1.7 で示すように第一段階では電子の衝突で He の準安定励起原子 He*が作られる。第 二段階でこの準安定原子が N₂ と衝突してこれを電離し自身は安定な He 原子に戻る。第一 段階と第二段階の確率は高く効率よくイオンを発生する。その結果 Vs は低下するのである。 その必要条件は図 1.6 あるように準安定励起電圧 Vm が相手原子の電離電圧 Vi よりも高い ことである。またペニング機構を伴うような原子の組み合わせの場合どのような分圧にお いてもこの機構が起きていることが予想される。

図 1.7 ペニング機構

1.2.液相放電

1.2.1.泡理論²⁾

液体中の電極により高電圧を印加すると電極表面で真正破壊が起き電極表面に気泡が発生 する。そしてその気泡中で前駆ストリーマーが電極間へ進展し、それが陰極に到達すると 絶縁破壊が起こり液相放電が発生する。この遷移理論は泡理論と呼ばれている。

気体での放電は1気圧で1cmにつき約3万Vが必要であると言われているが、液体中では1mmにつき5万V以上の電場が必要となる。

1.2.2.真正破壊

電子的破壊形式は泡理論では約1µs以下の短時間で完結する。伝導電子が単位時間に電界 Eよりエネルギーを得る割合Aは

$$A(E, ,T_0) = \left(\frac{\partial}{\partial t}\right)_E = e \,\mu E^2 = \left(\frac{e}{m}\right)^2 \ ()E^2$$
(1)

となる。ここに :電子エネルギー、e:電子電荷、µ:移動度、m:電子質量、 ():伝導の 緩和時間であり、また T0 は格子温度、 は電子状態を記述する因子を示す。一方、単位時 間に電子が格子との衝突によりエネルギーを失う割合 B は

$$B(\quad,\quad T_0) = \left(\frac{\partial}{\partial t}\right)_L = \frac{1}{(t_0)}$$
(2)

となる。ここに :一回の衝突で失うエネルギー、 S():衝突間の平均時間であり、衝突 が等方的ならば = Sとなる。したがってエネルギー平衡式は

$$A(E, ,T0) = B(, T0)$$

$$(3)$$

となる。(3)式の成立する最高の電界を破壊電界とするのが真正破壊である。

そしてこの(3)式の平衡が破れると電子は加速されてエネルギーを増し、格子と衝突して 電離を引き起こす。これが繰り返されると電子なだれが形成され、電界から電子系への注 入エネルギーが増加し、究極として固体構造が破壊される。このように電子なだれの形成 とその構造破壊を条件として取り入れたものが電子なだれ破壊である。

この形式に基づく破壊電界は電極物質に関係せず、さらに印加電圧波形にも依存しないの

で、誘電率と同じように物質固有の物理定数と考えられる。

1.2.3.前駆ストリーマー

絶縁物質が部分放電にさらされると特定の部分に放電が集中して放電孔を形成し、その 先端にさらに放電が集中してトリーと呼ばれる前駆ストリーマーを形成する。特に針-針電 極のような針状突起電界を有する場合に多く発生する。印加電圧が大きくなるに伴って三 段階にトリーが進展することが知られている。

樹枝状トリー ブッシュ状トリー 毬藻状トリー

である。樹枝状トリーは比較的に伸びやすく、ブッシュ状・毬藻状トリーは比較的に伸び にくい。印加電圧の周波数を高くすると伸びやすくなる。また周波数の増加に伴い発生ガ ス量も増加する。そしてガス量が増えるとプッシュ状トリー・毬藻状トリーへの移行電圧 が低下する。

1.3. 気液放電

本研究室では過去液相放電が観測されたことがある。しかしその事がきっかけとなり実 験装置に過負荷がかかり抵抗温度が上昇し電源装置が煙をあげ故障した。さらに安全面を 考慮した結果10kVフライバック方式に仕様が変更になり液相放電を行うには不十分な電圧 となった。そこで私が試行錯誤の上考案したのが気液放電である。

気液放電は図 1.8 に示すように陰極と陽極の間に気液界面を設置し電圧を印加する事で 気相中のストリーマ伸展によりエネルギーを増幅させ、そのエネルギーを用いて液相中で の放電反応を実現した方法である。この方式により 6kV より放電可能であるが確認されて いる。

図 1.8 気液放電(左)模式図,(右)写真

1.4.放電反応を用いた酸化的雰囲気下でのアミノ酸合成

1.4.1 還元的雰囲気下でのアミノ酸合成

1952年ユーリー・ミラーの実験では還元的雰囲気下(メタン・窒素・アンモニア・水素)に放 電反応を用いる事によって多種多量のアミノ酸を合成する事に成功した。還元的雰囲気下 に放電反応を用いると図 1.9 に示すような反応段階を経ることによりほとんどの種類のア ミノ酸を得る事に成功した。

(1)ホルムアルデヒドやシアン化水素が発生する。

(2)ストレッカー反応説:生成物が水中に溶け込みアンモニアとストレッカー反応によりアミノ酸を生成する。

(2)*シアン化水素重合説:シアン化水素の重合により生成する高分子状化合物が加水分解されアミノ酸を生成する。

(3)さらにこれら生成したアミノ酸が重合しペプチドを形成する。

図 1.9 還元的雰囲気下でのアミノ酸合成

1.3.2.酸化的雰囲気下に放電反応を用いたアミノ酸合成

はユーリー・ミラーは原始大気の組成を還元的雰囲気下であると仮定して実験を行ったが、 月の石の分析により当時の原始大気は二酸化炭素と窒素を主成分とする酸化的雰囲気であ ったことがわかってきた。そしてこの酸化的雰囲気を用いて同様の実験を行ったところ還 元的雰囲気でおこなった実験よりも少量生成になってしまった。

しかしながら無機物から有機物であるアミノ酸が合成できる事を証明した。その反応機構を下記に記す。結果として一級アミノ酸であるグリシン等よりは二級アミノ酸であるピ ロールやプロリンが生成される確率が高い。

$$H_2O + e \rightarrow OH + H + e$$

$$N_2 + e \rightarrow 2N + e$$

$$CO_2 + e \rightarrow CO^* + 1/2O + e$$

 $N + CO^* \rightarrow NCO^*$
 $NCO^* + H_2 \rightarrow HNCO + H$
 $NCO^* + H_2O \rightarrow NH_2 - COO^-$

2章 フェノール分解実験

2.1.実験器具と試薬

・実験器具

高温・高圧パルス実験装置、タングステン電極、ビーカー(100,200ml),メスシリンダー (50ml,500ml)、ホールピペット(1,2,5ml),ゴムピペット、薬匙、薬包紙、

・実験試薬

200mg/L フェノール(和光製試薬特級),塩化アンモニウム(和光製試薬一級)、アンモニア 水(和光製試薬特級)、4-アミノアンチピリン(和光製試薬特級)、フェリシアン化カリウム(和 光製試薬特級)

・実験装

高温・高圧パルス実験装置、分光光度計(SHIMAZDU UV-1240)、全有機炭素計 (SHIMAZDU,TOC-V),電子天秤、マグネチックスターラー

・実験方法

(1)200mg/L フェノール 12ml を 50ml メスシリンダーでとり反応セルに仕込む。
 (200mg/L フェノールは、あらかじめ用意しておいた 10g/L フェノール 10ml とり全量で
 500ml にすれば 200mg/L フェノールになる。)

(2)両電極が一直線上に来ているのを確認したら電圧を印加する。

(3)各時間(180.360.540sec)で 1ml ずつサンプリングする。

(4)サンプリングした試料中のフェノール濃度を4-アミノアンチピリン法で処理する。

試料 1ml を 100 メスフラスコに入れ全量で 100ml にする。資料をビーカーにあけ、塩化 アンモニウム-アンモニア緩衝液 5ml 加え撹拌し、5 分間放置する。次に、4-アミノアンチピ リン 2ml を入れ撹拌し、3 分間放置する。さらに、フェリシアン化カリウム 2ml を加え撹拌 し 5 分間放置する。

(8)処理された試料は分光光度計を用いて 510nm で吸光度を測定する。

2.2.実験装置

2.2.1 実験装置図

図2.1 実験装置全体図

 $Tungsten \ electrode, \quad Reaction \ cell, \quad CO_2, \quad N_2, \quad Vacuum \ pump, \quad High \ pressure \ cell, \quad Pressure \ gage$

図 2.2 超高温・高圧パルス実験装置電極部 (左)装置図,(右)写真

Tungsten electrode Reaction cell

図 2.1- の反応セルに実験試料を 12ml 仕込み の電極より電圧を印加する。図 2.1- のセ ルについては全面をラバーで作ったセルと一面のみを透明プラスチック板で作ったセルを 適宜使用する。

主に全面をラバーで作ったセルは反応用とし、一面をプラスチック板で作ったセルを写真 撮影用の物とする。また気液放電の写真撮影に関しては 2.2.4.に示す。

条件については陽極-水面距離を変化させる場合には陰極-水面距離は一定に保たなければ ならない。陰極-水面距離の変化を見たいときには逆に陽極-液面距離を一定にする。

電極間を図 2.3 のように定義し陰極-電極間距離変化の結果を 2.3.4(a)に陽極-電極間距離変化 の結果を 2.3.4(b)に示す。また気相の雰囲気条件を変化させ実験も行った。 2.2.3.反応セル

図 2.4 反応セル

図 2.4 に示す反応セルに試料を 12ml 仕込む。電極間距離は 1mm~15mm 程度まで変化させる ことができる。反応セルを扱う上で数点注意しなければならないことがある。以下に注意 点をあげる。

- (1) 電極の根元はパテで埋めてあるがその部分を毎回しっかり埋まっているのか確認しな ければならない。パテで埋まってないと根元から試料が漏れてしまうためである。
- (2) 両電極はしっかり一直線状に並ぶように設定する。陰極-電極間距離を大きくしていく とストリーマの屈折のために陽極よりも反応セル上部の角の部分にストリーマが伸展し てしまうことがある。
- (3) 沿面放電している際には放電時間を短く分割しなければならない。沿面放電により反応セルが局所的に加熱され燃え始めてしまう。
- (4) 反応セルの洗浄はしっかり電極をはずした後に行い、乾燥させなければならない。

2.2.4. 気液放電写真撮影

図 2.5 写真撮影用セル

放電写真をとりたい場合は図 2.5 のような一面にプラスチック板を使用したものを作成し 取り付ける。プラスチック板を使用した場合は酸性の溶液を注入してしまうとプラスチッ ク板が変性し、白く曇ってしまうので絶対に使用してはならない。

撮影手順

- (1) 装置より 1m~2m 程度ひいた場所に三脚を設置する。
- (2) 撮影条件にカメラを設定し焦点を電極に合わせる。
- (3) 放電を 60sec 行い、ストリーマにピントを合わせる。
- (4) そして次の 60sec~120sec の間に撮影を行う。

本実験装置の連続放電可能時間は 270sec である。その時間を正確に計るためにも 60sec の 放電を途中で止めることはしてはならない。途中でとめた場合でも 60sec の放電をしたもの としてカウントする。

撮影条件

画質 Fine 撮影モード BULB 撮影 記録画素数 SXGA(1280×960) 絞り値 F5.0

2.2.5.電圧印加準備

(1)放電用電源ケーブルを差し込む

(2)すぐ下のパネル内のブレーカーを立ち上げる

(3)実験装置に近いパネル内のブレーカーを立ちあげる。

(4) タイマーを目的時間に調節する

(5) のダイヤルを目的電圧まで合わせる。尚目的電圧とダイヤルの関係はあらかじめ実験 を行い確認しておく。のボタンを押し放電を開始する。

2.2.6 出力電圧

電源のスライダックスを目的電圧に合わせる際に AKIKO(株)により測定された図 2.2.7 を 参照にした。こちらの図 2.7 はデジタル画面に表示される入力電圧に対して電極間での出力 電圧を示している。

図 2.7 AKICO 出力電圧試験結果

2.2.7.全有機炭素計

全有機炭素計の使用方法を順に説明する。

(1)外側に付いているポリタンク(0.02MHCl・蒸留水)を確認する。

(2)カバーを開け蒸留水補給瓶が白いシールの付箋まで達していることを確認する。また瓶は奥と手前に二つあるので必ず二つとも確認する。

(3)一次バルブを開放し二次圧が 0.2MPa になっていることを確認する。減圧弁は調整して あるのでむやみに触らないようにする。

(4)右下にあるスイッチを入れる。同時に白い矢印の流量計のボールが白い付箋まで上昇していることを確認する。上昇しない場合は流量が多すぎて自動で切断されたり少なすぎたりするとボールが浮いてこないので以上がある場合は減圧弁を確認する。

(5)15-30分後F3でモニタ画面を呼び出し下図のようにオールOKになっているか確認する。

電気炉温度 : 692°C 0K 除湿器温度 : 0.8"0 0K ベースライン位置 : 08 ベースライン変動 : 3 ベースラインノイズ: OK

(6)F4 のボタンを押し条件設定画面を呼び出す。

(7)F2 F3を押しTC+ICのフラグをたてる。どの検量線を使うのか白括弧の中から番号 Nextをおし指定する。注入回数は少なくても2回に設定し最大注入回数は3回に設定する。 *これに関しては適宜任意で指定する。

また必ず連続測定を ON に設定するようにする。

(8)Measure Sample を押しした画面を呼び出す。黒括弧のホースをサンプルに浸し Startを押す。

次に電源の切り方を説明する。

(9)下画面より F1 を押す。

(10)下の画面が出るので F5 でログオフする。後は自動的に切れるので放置する。

(11)一次バルブを閉めて終了。*二次バルブにはむやみに触らない。

2.3 結果

気相側から液面にかけて

 $O_2 + e^- \rightarrow O_2^ P h + O_2^- \rightarrow C$

液相側

 $H_2O + e^- \rightarrow H^+ + O H^-$

 $P \ h + O \ H^- \to C$

のような反応経路を経てСの生成物にいたっていると考えられる。

フェノール濃度は図 2.8 のグラフのように変化する。放電時間と共に濃度が減少していくの が良くわかる。これはフェノールが酸化分解されているためであり、成田氏の分析でフェ ノールが酸化されるとハイドロキノンやカテコールといった物質になることが確かめられ ている。また中間生成物として考えられるものはベンゼン環が開いたものを含めて 27 種類 にのぼり下記に記す⁴⁾。

pyrogallol

catechol

hydroquinone

hydroxyl hydroquinone

phloroglucinol

1,4-benzoquinone

hydroxybenzoquinone

glyoxyal

Ö

2.3.2.フェノール分解反応における中間生成物

前節より放電処理時間が経過するに従ってフェノールが分解されている事が明らかとなった。この節ではさらに分解されたフェノールが本当に無害化されたのかを検証していく。

・実験方法

高圧セルの中に初濃度200mg/Lフェノールを20mL設置し高圧セルでHerich状態で10kV で 60sec 放電処理した。更にその試料を Total Organic Carbon(全有機炭素計)で分析しフェノ ール+中間生成物の全量を測定した。また同時に 4-アミノアンチピリン法で処理し分光光 度計で分析しフェノール濃度を測定した。そして(1)式に実験値を代入することによって中 間生成物の割合を算出した。

$$\frac{TOC_{after}[mg/L]}{TOC_{before}[mg/L]} - \frac{Concentration of phenol_{after}[mg/L]}{Concentration of phenol_{before}[mg/L]}$$
(1)

= *Rate* of int ermediate product[-]

図 2.9 フェノール分解経次変化

・考察

図 2.9 よりフェノールの減少とともに中間生成物が増加しているのがわかる。その割合は残 余フェノールが 9.0%時で中間生成物が 77.5%とほとんどが完全に無害化されたと考えられ る無機炭素にまで至っていないと考えられる。

あくまで本研究室での最終的目的はアミノ酸合成であるので無害化されていない事に関 して今回は問題にしない。この論文においてフェノール分解反応は気液放電のエネルギー を評価するパーラメータとして扱う。次節はその点について記す。

2.3.3.反応速度定数の分析

フェノール濃度変化より一次反応・二次反応であると仮定して下式に代入し近似性を検討し反応次数を決定した。

一次反応
$$\ln\left(\frac{C}{C_0}\right) = k t$$

(3)

二次反応

$$\frac{C_0 - C}{C_0 * C} = k t$$
(4)

その結果一次反応が R2=0.945 であるのに対して二次反応は R2=0.771 という結果になった。 よって気液放電におけるフェノールの反応次数は一次であると比較により考えられ、それ に基づいて様々な条件で解析した。

2.3.4.電極間距離への依存性

(1)気相の厚み(陰極-液面距離)の依存性

・実験条件

液相中の陰極と水面の距離を 3mm に保ち陽極と水面の距離を変化さして放電実験を行った 結果である。

・考察

陽極-液面距離を 3mm に保ち,陰極液面距離を変化させたのが図 2.10 である。陽極-液面距離 を増加させていくと初期分解反応速度定数は上昇していく。これは気相側のストリーマ表 面積が増加した事によると考えられる。ストリーマの表面積が増加すると気相側で励起さ れる分子が増加される。この事により液相中のより多くのフェノールが酸化分解され反応 速度定数が上昇したものと考えられる。

今回気相中の状態を考慮し、Passionの法則を元に電極間距離に、圧力条件を加えた事によ りR²値が0.8665から0.9937となりより良い値を示すことから圧力への依存性を考慮した。 電極間距離は5mm以下になると水を吸い上げてしまい放電しない。今回の結果では24mm 以上の実験ができないがさらに電極間距離が伸びることが予想される。

0.00120.0008 - 0.0004 - 0.0004 - 0.0004 - 0.00000 - 0.00000 - 0.00000 - 0.00000 - 0.00000 - 0.00000 - 0.000000 - 0.00000 - 0.00000 - 0.000000 - 0.00000000000 - 0.000000 -

図 2.11 液相の厚みの依存性

実験条件

気相側を真空引きにした後に大気圧まで窒素で埋めていき窒素リッチ条件で気液放電処理 を行なった。

・ 考察

図 2.11 に示すように気相側の厚み(10mm)を一定に保ち、始め液深 2mm~9mm 程度まではト リー(前駆ストリーマ)が陰極にまで達する為に完全な気液放電を起こしている。そのため 9mm までは液深を伸ばすにつれ初期分解反応速度定数は向上する。しかし 9mm 以上になる と前駆ストリーマは進展するが陽極には達しておらず完全な気液放電を起こす事が出来な いために反応速度定数が著しく低下する。

この結果は目視でも確認できる。透明なプラスチックセルを電極先端にとりつけ試料を仕込み、同じように液深を代えて電圧を印加し観察すると図 2.12-(右)に示すようにマゼンダ色をした前駆ストリーマの伸展が図 2.12-(左)に比べ陰極に届かなくなるのが良くわかる。 またその際に気相側のストリーマは液面に沿って沿面放電する。そのために完全な気液放電でなくとも液相表面ではフェノールは酸化されるので濃度変化が起こるこの条件での反 応は大気中に酸素を含まないので

 $H_2O + e \rightarrow H^+ + OH^-$

 $\mathrm{Ph} + \mathrm{OH}^- \to \mathrm{C}$

であると考えられ、より水酸化物イオンの生成量に依存すると考えられる。

図 2.12 完全な気液放電(右)と不完全な気液放電(左)

2.3.5 圧力の依存性

図 2.13 圧力変化条件

・実験方法

セル内の圧力を変化させ実験を行った。その際ガス種として N₂,He ガスを用いた。尚、気相の厚みは 10mm 液相の厚みは 3mm で一定に保った。

・結果

圧力変化に関する N₂ 及び He ガス結果を図 2.13 に示す。尚この条件では 300mmHg 以下に なるとストリーマ生成が困難になり電極表面だけが発光するようになったのでその部分の 結果は除外してあるまた同様に 3000mmHg 以上でもストリーマ生成が困難になるので結果 を除外した。

そして図 2.13 に示すように結果として圧力が減圧されるに従ってフェノールの初期分解 反応速度定数が向上していくのがわかる。この結果はパッシェンの法則に則して考えるこ とができ良い一致性をみせた

また He と N₂を比較した場合どの圧力で比較しても He の方が若干フェノールの初期分解 反応速度定数が高い事がわかった。また高大気圧状態(3000mmHg)で電圧を印加した場合 N₂ は難放電現象に移行してしまったが He ではストリーマが発生していた。これは希ガス特有 の準安定軌道を持つことに起因しているのではないかと考えられる。またこの結果より放 電反応を考える際には電離電圧が低い為電離されやすい為にストリーマが生成されやすい という考え方が間違っていること示す。実際には準安定軌道に関わらず様々な要因が働く ことが考えられるので注意が必要である。

2.3.6 ガス種の影響

前節までは装置の条件を変化させてフェノールの初期分解反応速度定数を向上させたが本 節はガス種を変えて実験を行った時の結果を記す。

(1)酸素分圧の影響

図 2.14 酸素分圧への依存性

・実験方法

高圧セル内に封入するガスに O2 を N2 と混合し分圧を変化させ放電処理を行った。 条件:圧力 763mmHg、電圧 10kV、フェノール溶液(初期濃度 200mg/L、20mL),気相側厚み 10mm、 液相側厚み 3mm、放電時間 60sec

・考察

図 2.14 に示すように O₂の分圧を変化させるのに従ってフェノールの初期分解反応速度定数 が向上していくのがわかる。これは N₂などの不活性ガスとは異なり、気相側の O₂がラジカ ル化され水面より照射されることによりフェノールの酸化分解を促したのだと下記に記す ような反応機構からも考えられる。酸素分子が増えることにより気相側から液面にかけて の

 $O_2 + e \rightarrow O_2^- + e$ $Ph + O_2^- \rightarrow C$ の反応が促進されたと考えられる。

(2)He の影響

図 2.15 He の影響

・実験方法

高圧セル内に封入するガスに希ガスである He を N₂ に混合し分圧を変化しフェノール溶 液を反応セル内に挿入し気液放電処理を行った。

条件:圧力 763mmHg、電圧 10kV、フェノール溶液(初期濃度 200mg/L、20mL),気相側厚み 10mm、 液相側厚み 3mm、放電時間 60sec

・考察

図2.15 に示したように He 分圧を増加させていくと初期分解反応速度定数が増加していく のがわかる。そして He を 3~6%、N₂を 2~7%高圧セル内に封入した際にフェノールの初期 分解反応速度定数を特異的に向上させる事が出来ることを見出した。この原因は He と N₂ がペニング効果を生み出す組み合わせである事に起因していると考えられる。なぜなら同 じ準安定軌道を持つ Ar-N2 組成で同じように少量添加で大気をつくっても特異的な変化は 得られなかった。

そしてこの特異的変化の原因は少量分圧組成時にペニング効果の発生する部位が点在 的に発生する事にあると考えている。少量組成時、ペニング機構発生域が点在する事によ り電気的に偏る部位が点在する事になる。そのためストリーマが発生するとクエンチされ ストリーマの構造が変化し表面積が増大する。そして気液界面での反応を促進したのでは ないかと考えられる。その概念を図 2.16 に記す。

図 2.16 ペニング効果によるがクエンチの概念

図 2.17 He 分圧変化のまとめ

ここまでをまとめたものを図 2.17 に示す。He 分圧を増加させるに従ってペニング機構の発 生する確率が高くなるのでフェノールの初期分解反応速度定数が向上する。また少量組成 ではストリーマ構造を変化せるためにストリーマの表面積を増加させ、フェノールの初期 分解反応速度定数を向上させた。更にこの二つの要因を含む N₂ 少量添加時にフェノールの 最大初期分解反応速度定数を得る事ができた。

3章 アミノ酸合成への応用⁵⁾

1950 年、ユーリとミラーは原始大気を還元的であると考え、水素・メタン・アンモニウム・水蒸気からなる大気に 60kV で一週間放電し続け更に一週間放置した後に生成された黄 褐色物質の中から多種のアミノ酸を合成したことを見出した。しかし月の石の解析により 原始大気の組成は二酸化炭素・窒素を主成分とする酸化的雰囲気であったことが判明した。 そして、この酸化的雰囲気条件下で同じように実験したところ還元的雰囲気下のように多 種のアミノ酸が得られないものの微量のアミノ酸を生成できる事を示した。そして本研究 室では来る人口増加に伴う食糧危機に備え、ガスより食糧を生み出すというプロセス構築 を目標にしている。

3.1.実験器具と試薬

・実験器具

タングステン電極、三又フラスコ(100ml),メスシリンダー(50ml,500ml)、ホールピペット (1,2,5ml),ゴムピペット、薬匙、薬包紙、

・実験試薬

ニンヒドリン(和光製試薬特級),グリシン(和光製試薬特級),L-プロリン(和光製試薬特級)

・実験装置

高温・高圧パルス実験装置、分光光度計(SHIMAZDU UV-1240)、全有機炭素計 (SHIMAZDU,TOC-V),電子天秤、マグネチックスターラー

3.2 実験装置

3.2.1 超高温・高圧パルス実験装置

図 3.1 実験装置図

3.4.実験方法

3.4.1 実験装置操作

(1) アミノ酸合成の場合は長時間放電するのにともない外付けセルとしてパイレックス製の三叉フラスコを用いた。こちらもフェノール分解と同様に実験装置全体を真空状態にする。

(2)そして次に一度外付けセルをつなぐバルブを閉め遮断する。そして Fig.2 の 内に窒素: 二酸化炭素=1:1 の酸化的大気条件を作り出す。

(3)次に外付けセルをつなぐバルブを開放しそれらを流し込む。そして次に を用いて装置 全体の圧力を 300mmHg に設定した。

(4)そして電源装置の目盛りが 18kV になるように調節し時間の設定をしてスイッチをいれ 放電処理を行った。更に放電終了後 12 時間放置した後でニンヒドリン反応を用いて生成物 の同定を行った。

EtOH添加時

図 3.2 実験処理写真

3.4.2 ニンヒドリン反応

(1)Millex を用いて溶液中の浮遊物を除去する。

(2)放電処理試料を 5.0ml ホールピペットで 5.0ml 採取しコニカルビーカーにうつしとる。

(3)0.001mol/Lのニンヒドリン溶液を作成し1.0mlホールピペットで1.0mlサンプリングし試料の入っているコニカルビーカーに混合する。

(4)あらかじめ 70 に設定しておいた恒温槽に 15 分間浸す。

(5)分光光度計のスペクトラムモードに設定し Base 補正する。

(6)セルに混合加熱試料を注ぎ分光光度計にセットしスペクトラムを測定する。

3.5 実験結果

3.5.1.ニンヒドリン結果

図 3.2 ニンヒドリンと試料の比較

図 3.2 に 24 時間反応を行った後にニンヒドリン反応を行ない分光光度計でスペクトラムを 作成しニンヒドリンのスペクトラムを作成した。この結果より 400nm-250nm 付近に特徴的 なスペクトラムが検出された。

図 3.3 試料とアミノ酸との比較

さらに 200-400nm の間で特徴的なスペクトラムを一級アミノ酸であるグリシン及び二級ア ミノ酸であるプロリンのスペクトラムと比較した。すると図 3.3 に示されるように二級アミ ノ酸であるプロリンのスペクトラムに比較的に近いのでプロリンに限らず二級アミノ酸に 近いものが生成されているのではないかと考えられる。これは理論とも合致する結果であ り今後の詳しい分析が求められる。

3.5.2.GC-MS 結果

先の節でニンヒドリン反応によって二級アミンの物質を検出する事に成功した。そこで 比較的に生成物が多く見られそうな還元的要素を加えたハイブリット型(気相:二酸化炭 素・窒素/液相 0.01M エタノール溶液)の試料を GC-MS を用いて分析した。ニンヒドリン反 応で二級アミンを示していたものが図 3.5 に示す C₃H₉O₃:Isoxazolidine-5-carboxylic acid であ ることが判明した。この結果よりアミノ酸でないことが示唆された。

しかしながらプロリンに近い物質が生成された。これは中間生成物からイミノ酸への合成を阻害してしまった可能性が考えられる。この事から液相中にアルコールを用いる場合はさらに低濃度での実験解析が必要になることが考えられる。また APPENDIX には二級アミンだけでなく他の物質の結果も添付した。

図 3.4. ニンヒドリン反応を示した生成物

結言

本研究室では3-6%He もしくは2-8%N₂大気雰囲気下でフェノールの初期分解反応速度定数を特 異的に向上する事を発見した。それはペニング効果により引き起こされたと考えられる。また二 酸化炭素と窒素からなる大気中に気液放電を用いることによってアミノ酸の可能性のある物質 を合成した。

.水の架橋現象に関する不純物の影響

緒言

Fucks¹⁾らは水の入ったビーカーを二つ並べ陰極と陽極をそれぞれのビーカーに浸し高電圧 をかけたところ水の架橋現象が起る事を報告し我々も確認した。(図1)Fucks らは単に水の ミクロ構造と呼んでいるが主たる原因は水分子内の酸素原子側が電気的に負となる電気双 極子による分極にあると考えられる。超純水に高電圧をかけると 10mm あたり 3000 万個 以上もの水分子が整列すると考えられる。

🗵 1 The Floating Water Bridge

要旨

Fucks らの研究に基づき水の入ったビーカーを二つ並べ陰極と陽極をそれぞれのビーカー に浸し高電圧をかけたところ水の架橋現象が起る事を確認し、さらに大電流(18kV-100kV) で放電することでより長い架橋現象に試みた。そして本研究室ではこの水の架橋現象に不 純物を添加し実験を行い結果の検討より不純物の中でも電離した際の陽イオンが大きな阻 害要因になることを明らかにした。また難溶解性かつ不導体である Al₂O₃を添加し同じ実験 をおこなったが水の架橋現象にはほとんど影響を与えない結果となった。

1.理論

1.1.水の電気双極子

双極子モーメントとは、電気量(プラス電荷もマイナス電荷も電気量は同じ)に両電荷の間の 距離を掛けた数値である。そして、この水の架橋現象の主たる原因は水分子内の酸素原子 側が電気的に負となる電気双極子による分極にあると考えられる²⁾。他の物質は H₂S(1.02Debye),CH₃OH(1.47Debye)水の電気双極子モーメント(1.97Debye)は他の物質と 比較しても大きいことがわかる。

1.2. The floating water bridge

水の電気双極子は通常相互作用があるものの水分子はバラバラの状態で存在する。しかし 高電圧をかける事によって図 2 に示すように整列構造をとるようになる。そして水分子が 引き寄せられ整列構造をとりもう一方のビーカーに移動するこの連続現象が水の架橋現象 である。

図2 水の架橋現象の構造

2.実験方法

図3 実験装置図

図 3 のように水の入ったビーカーを一部接触した状態で二つ並べ陰極と陽極をそれぞれの ビーカーに浸し高電圧をかけながら徐々にビーカー間の距離を離していく。

3 実験

3.1 電圧への依存性

実験方法

日新電機にある直流電圧発生装置を用いて 18kV-100kV の範囲で同様の実験を行った。

結果

図 4 は電圧を変化させた時の結果を示したグラフである。これらは電圧を変化させるに従って電極間距離が伸びていくことを示している。しかし 80kV 以上では 35mm 以上の伸長が 困難になってくる。これは二つの大きな要因があげられる。

(1)熱拡散による水の整列構造の阻外

(2)自重による阻害

(1)図 1 の写真の中に示されるように Water Bridge 自身が熱線のように作用し温度上昇して いくのが確認される。そのために Water Bridge の核となる水の整列構造が阻害され Water Bridge を保つのが困難になる。

(2)図 1 の写真の中で示されるように Water Bridge が伸長するにたわんでくる。そしてこの 重みに耐えきれなくなり橋は崩落する。

また京都にある日新電機(株)で実験を行ったが当初、高電圧を得るために電流値も同時に上 昇させていた為にストリーマが起きやすくなり 20mm 以上の伸長は困難であった。そこで 抵抗器を挟み電流値を下げて実験を行ったところ 40mm 近い伸長に成功した(その時の結果 は蒸留水であるので除外してある。)。しかしながら電流値が弱すぎても Water Bridge を保 つことは困難になるのでその電圧と電流のバランスが重要である。

3.2 Water Bridge の流れる方向

Water Bridge は橋が架かっているように見えるだけではなく実際にビーカーの間を水分子が 移動する現象である。そしてその方向は目視だけで確認することは困難である。そこで片 方のビーカーの溶液を NaClを用いて上昇させておき実験させておき電気伝導度の上がって いない方のビーカー内の溶液の電気伝導度を測定した。つまり水の流れる方向が存在する ならば水の流れ込まれたビーカーの電気伝導度は上昇するはずであると仮定して実験を行 った。

3.2.1.陽極側電気伝導度上昇条件

図 5 陽極側電気伝導度上昇実験

実験

ビーカー間を 1mm に設定し陽極側の電気伝導度のみを上昇させ 10kV で実験を行い実験後 電気伝導度計で陰極側の電気伝導度を測定した。

結果

図 5 により陰極側の電気伝導度に変化は見れず陽極から陰極への水の流れがない事がわかる。

3.2.2.陰極側電気伝導度上昇条件

図 6 陰極側電気伝導度上昇実験

実験

ビーカー間を 1mm に設定し陰極側の電気伝導度のみを上昇させ 10kV で実験を行い実験後 電気伝導度計で陽極側の電気伝導度を測定した。

結果

陰極側の電気伝導度を上昇させ実験を行ったところ陽極側の電気伝導度の上昇が確認された。このことから陰極より陽極に水の流れがあることが判明した。

Water Bridge は水の整列構造が重要な現象であるので通常超純水が溶液に用いられることが 多い。しかしながら今回あえて不純物を添加することによって水の整列構造を乱した場合 影響を与える要因は何であるのか検証した。

3.3.1.不純物への依存性

: 基本的に容易に橋を保てる

- :橋を保つのも難しくなってくる。
- :急激に橋ができずストリーマ展開

図6 不純物の影響

実験方法

NaCl を 200 µ S/cm に調整した溶液をイオン交換水 100ml に添加しながら目的とする電気 伝導度に設定し各電気伝導度において実験を行った。
結果

図 6 に示すように始め の段階では Water Bridge は容易に観測される。しかし の段階よ り橋はほとんど観測されずすぐに図7 に示すようにストリーマが生成してしまう。そして の段階になると引き合う間もなくストリーマが生成した。

温度上昇における阻害
ストリーマ伸展へ移行 自重による阻害

図7 水の架橋現象後

3.3.2.不純物の影響因子

図8不純物の影響(電気伝導度について)

実験方法

不純物として三種類 NaCl,NaOH,NH₄Cl を添加し各物質の電気伝導度を変化させ電圧 10kV の条件で実験した。

結果

電気伝導度についてまとめると、それぞれ固有の傾向を持って生成距離を減少させていく。 またNH4Clがもっとも高い電気伝導度で架橋現象を観測させることのできた物質であった。

図9 不純物の影響について(モル数について)

そこで同じ条件で今度は各物質のモル数でまとめてみた。すると図9に示すようにNaClとNaOHの減少傾向にのみ一致性が見られた。またNH4Clのみが全く異なる減少傾向をみせた。そしてこの三物質の結果より検討すると、電離した時の陰イオンが不純物としての要因になるのであるならばNaClとNH4Clの減少傾向を示さなければ矛盾が生じる。そして陽イオンが不純物としての要因になるのであるならばNaClとNaOHが一致性をみせる。そして結果は後者を示すので不純物の一番大きな要因は陽イオンであることがわかった。

3.3.3.アルミナの影響

図 3.3.3 アルミナの影響

実験

Al₂O₃を不純物として添加し電圧 10kV の条件で実験した。

結果

図 3.3.3 に Al₂O₃ を添加した時の結果を示す。Al₂O₃ は難溶解性・不導体な物質である。そ して図 3.3.3 に示すようにほとんど添加による影響が見られなかった。これは不純物として 加えられた Al₂O₃ が電離せず水の相互作用に影響を及ぼさなかったことにあると考えられ る。

また Al₂O₃ を陰極側に添加し陽極側に超純水を使用し実験を行うと Al₂O₃ の白い粒子が陽 極側のビーカーに移動していくのが確認できる。

結言

今回は電圧と不純物に関しての影響を検証した。その結果、電圧の上昇とともに水の整列 構造は作られやすくなり橋の伸長に効果的な事が判明した。また橋の整列構造を乱すと考 えられる不純物(NaCl,NaOH,NH4Cl)添加により電気伝導度が上がると橋の伸長を阻害す る結果が出た。そしてその大きな要因は各物質での実験結果の比較より陽イオンであるこ とが判明した。また Al₂O₃のように難溶性かつ不導体である物質を添加した場合大きく橋の 伸長を阻害するような結果は得られなかった。この事からも水分子の整列構造が大きな鍵 となっている事が良くわかる

謝辞

本研究を行うにあたり、終始多大なるご指導下さいました物質化学科・西海英雄教授 に敬意を示すとともに心から深く感謝いたします。そして、本研究を私と共同で遂行し ていただいた碓氷満久氏に深く感謝申し上げます。

そして、西海研究室修士2年大浦陵氏、修士1年佐藤吏氏、学部四年 厚見慶 氏、 伊藤巨 氏、小島督央 氏、成田大祐 氏、長谷川恭平 氏 以上の皆様にも深く感謝 し、厚く御礼を申し上げます。

1)「放電現象」 電気学会 編

2) 電気学会放電ハンドブック出版委員会編「放電ハンドブック」、コロナ社、1998

3) 2005 年度修士論文「CH₄-CO₂二成分系における放電反応」 三枝 悠 著

4)"Pulsed crona-induced Degradation of Organic Materials in Water" W.F.L.M.Hoeben

5) F. Manic, M. Monrovia, Morava Journal of Thermal Analysis and Calorimetry, 60 (2000) 1111.1121

6) Elmar C. Fuchs, Journal of Phisics. D: Appl. Phys. 40 (2007)6112.6114

APPENDIX

時間	モル吸光度	フェノール濃 度
0	0.115	100
180	0.068	59.13043478
270	0.052	45.2173913
540	0.011	9.565217391

フェノール濃度変化

気相の厚みへの依存性

電極間距離		5mm			
時間[SEC]		abs		濃度	LN(c0/c)
	0		0.262	100	0
	180		0.212	80.91603	0.211758
	360		0.184	70.22901	0.353409
電極間距離		1 0 mm			
時間[SEC]		abs		濃度	LN(c0/c)
	0		0.265	100	0
	180		0.223	84.15094	0.172558
	360		0.176	66.41509	0.409246
電極間距離		1 3mm			
時間[SEC]		abs		濃度	LN(c0/c)
	0		0.258	100	0
	180		0.208	80.62016	0.215422
	360		0.161	62.4031	0.471555
電極間距離		24mm			
時間[SEC]		abs		濃度	LN(c0/c)
	0		0.268	100	0
	180		0.214	79.85075	0.225011
	360		0.162	60.44776	0.503391
	540		0.138	51.49254	0.663733

液相の厚みへの依存性

2mm	電極間距離 24mm	764mmHg		
time[sec]	ABS	濃度	ln(C0/C)	
0	0.323	100	0	
360	0.238	73.68421	0.305382	0.000848
5mm				
0	0.322	100	0	
360	0.232	72.04969	0.327814	0.000911
10mm				
0	0.323	100	0	
360	0.224	69.34985	0.366006	0.001017
15mm				
0	0.322	100	0	
360	0.232	72.04969	0.327814	0.000911
20mm				
0	0.322	100	0	
360	0.23	71.42857	0.336472	0.000935

酸素分圧の影響

酸素濃度 [%]	ABS[-]	初期分解反応速度定数
1.0256	0.195	0.0004
9.4626	0.191	0.002
19.92167	0.011	0.0043

He 分圧の与える影響

Не	k	ABS
0.955582	0.00145	0.22
0.933489	0.001299	0.222
0.877108	0.001224	0.223
0.671875	0.00115	0.224
0.622276	0.00115	0.224
0.900763	0.001224	0.223
0.059524	0.00115	0.224
0.130081	0.000928	0.227
0.096386	0.00115	0.224
1	0.000709	0.23
0	0.000493	0.233
0.03555	0.000855	0.228
0.031469	0.001076	0.225
0.285377	0.001002	0.226
0.548055	0.001076	0.225
0.966709	0.001526	0.219
0.962607	0.001602	0.218
0.978824	0.001224	0.223

ニンヒド	エネルギー
リン	[eV]
320	0
359	3.1
366	2.7
430	19.9
454	11.1
463	12.7
473	8.3
486	14.1
531	3.7
581	28
644	3
655	70.1
667	2.4

グリシン	エネルギー
	[eV]
269	0
329	17
366	7.4
393	9.8
408	9
430	18.7
453	10.5
463	12.1
472	7.9
486	13
536	2.9
545	4.2
558	3.9
581	19.2
602	13.6
644	2.8

655	65.8
665	2.3
	エネルギー
7097	[eV]
280	0
330	11.2
348	6.3
366	7.8
366	7.2
396	13.2
416	11.1
422	18.7
453	10.3
463	11.9
472	7.9
486	13.6
530	3.7
581	27.8
644	3.1
655	70.6
666	2.4
685	4.3

2 4 時間試料	エネルギー[eV]
270	0
349	12.3
366	10.4
397	14.8
416	10.9
423	20.8
463	12.4
473	8.1
486	13.7
531	3.6
581	27.1
644	3
655	68
666	2.3
10時間試料	
280	0
347	10.4
366	6.6
398	11.8
416	10.5
423	17.9
453	9.9
463	11.4
473	7.5
486	12.7
531	3.4
580	25.7
644	2.9
655	66.2
666	2.3

Water Bridge

電圧変化

電圧[V]	生成距離
	[mm]
15000	15
20000	25
50000	27
75000	32
100000	33

陽極側電気伝導度上昇実験

時間[sec]	陰極[μS]
0	0
3	0
5	0
6	0
8	0
12	0
15	0
18	0
21	0
23	0

陰極側電気伝導度上昇実験

時間[sec]	陽極[μS]
0	0
9	2
10	2
13	3
15	4
17	6
22	12

電気伝導度変化

電気伝導度 µS	生成距離
	mm
1	13
2	10
13	5.5
15	4
19	3
6	8.5
10	6
16	3.5
20	3
22	2.5
23	2.5
24	0

不純物変化による結果一覧

NaCl		
電気伝導度[µS/cm]	生成距離 mm	mol 数[-]
1	13	6.5814E-07
2	10	1.3163E-06
13	5.5	8.5558E-06
15	4	9.8721E-06
19	3	1.2505E-05
6	8.5	3.9488E-06
10	6	6.5814E-06
16	3.5	1.053E-05
20	3	1.3163E-05
22	2.5	1.4479E-05
23	2.5	1.5137E-05

NaOH		
4	12.5	1.8088E-06

6	11	2.7132E-06
7	10	3.1654E-06
11	7.5	4.9742E-06
16	6	7.2351E-06
17	5.5	7.6873E-06
19	5.5	8.5917E-06
20	5	9.0439E-06
22	4	9.9483E-06
27	2	1.2209E-05
30	1.5	1.3566E-05
39	1	1.7636E-05

NH4Cl		mol
0	13	0
3	11.5	1.6845E-06
4	11.5	2.246E-06
8	10.5	4.492E-06
10	10	5.615E-06
14	9	7.861E-06
17	7.5	9.5456E-06
20	6.5	1.123E-05
21	6	1.1792E-05
23	4.5	1.2915E-05
27	4	1.5161E-05
36	1.5	2.0214E-05

