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Numerical Method for Space Harmonic Waves in

Polyphase Induction Motors

Yoshifuru SAITO*

Abstract

A numerical method is proposed to solve the problem of space harmonic waves in
polyphase induction motors. Results are compared with those of other numerical
methods.

1. Introduction

The accurate estimation of the torque produced by electric motors is important for the
improvement of various mechanical equipments driven by them. However, magnetic saturation
and space harmonic wave effects make the accurate computation of the torque a difficult prob-
lem. Of all types of electric motors, the polyphase induction motor is by far the most popular
and the most widely used machine. Its space harmonic waves, however, produce abnormal
torques and noise {1 to 5].

A numerical method not taking into account space harmonic wave is given in reference
[6]. However, if this method is applied to the problem of space harmonic waves in a polyphase
induction motgr, a very small stepwidth must be selected to obtain accurate results, in spite of
its time,consuming nature. The reason is that the fundamental equations of polyphase induc-
tion motors taking into account the space harmonic waves consist of linear simultaneous dif-
ferential equations with rapidly varying periodic coefficients. The purpose of this paper is to
put forth one simple numerical method to solve these equations with periodic coefficients,
quite effectively. The solution obtained by the method takes into account exactly the space
harmonic waves and, as a result, describes transient and steady state characteristics of polyphase
induction motors well. Furthermore, the method improves and generalizes the computational
procedure described in reference [6] .

The fundamental equations of polyphase induction motors considering space harmonic
waves are introduced in terms of complex objects in section 2 of this paper, whose additional
details are given in reference [5].

Section 3 describes the numerical method, where we at first approximate varying coef-
ficients by keeping them constant over small time intervals and perform a direct integration of
the fundamental differential equations over the above intervals to obtain analytical solutions.

Section 4 describes numerical results computed by the method of this paper. Comparison
is made among various numerical schemes (see Appendix 2).

* Research assistant
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2. Mathematical model

The linear simultaneous differential equations of polyphase induction motors are con-
veniently represented by matrix notations.

They involves the voltage vector V{i] (¢ denotes the time), the impedance matrix
Z[va t]which is a function of the time ¢ and of the mechanical angular velocity v, and the
current vector I ¢]. The linear simultaneous differential equations with periodic coefficients are

VIE=ZIvatlJ[2) c - v cvvrrrr e erm et m
The elements of the voltage vector V[t] are the state voltages, whose amplitude are de-

noted by V, and angular velocity by vs . Then, the voltage vector V{¢] (column vector of order
4)is

V[ t]= |Vsexp(jv5t), V}‘exp(-jvs t)' 0,0 }’ .................... (2)

where the superscript * denotes the conjugate quantities and j is the imaginary unit (j=v—1).

The impedance matrix Z[v.%] (square matrix of order 4) consists of the resistance
matrix R, the inductance matrix L[vat] and the torque matrix G[val] which can be ob-
tained by differentiating the matrix L [wvat] with respect to the time ¢ and dividing the result
by the mechanical angular velocity va . This yields

ZVat]l= R+ vaGlvatl+ Llvatl(d/dE). -« v oo emiiaannen.. 3)

The resistance matrix R (diagonal matrix of order 4) consists of the stator resistance R
and the rotor resistance R, as follows:

R=[Rs, Rs, R+, Rr] ................................... (4)

The inductance matrix L[vat] is classified into four cases by the relations of numbers

of rotor phases and of pole pairs p as described in reference [5]. The numerical method in this
paper is applicable to all four cases. In order to illustrate the essential characteristics of the
method, only a special case is treated as an example, where only the 19th space harmonic wave
is taken into account. This example, at first, is practically useful because the 19th space har-
monic wave has a big contribution to abnormal torque and then is theoretically very interesting
as shown in Appendix 1. In this case, the elements of L([vat] are the stator self-inductance
Ls, the rotor self-inductance L., the mutual inductance of the fundamental wave M, and the

mutual inductance of 19th space harmonic wave Mis. The inductance matrix L([vat] (square
matrix of order 4) is

Llvatl=
Ls 0 Mexp(jvat) Myexp(jl9 va t)
0 Ls Myexp(—ijl9va i) Miexp(—jvat)
Miexp(—jvat) Muexp(jl9va i) L. 0
Miexp(—jl9va i) M,exp{jvnt) 0 L,
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The torque matrix G[vat] (square matrix of order 4) is given by

Glvantl=(d/AD LI vatl(1/Vn). - o+ oo oo e e (6)

The current vector I[#] (column vector of order 4) consists of the stator positive phase
current Is,, the stator negative phase current i, the rotor pesitive phase current i,, and the
rotor negative phase current i, viz.

A T P S N L )

The torque T is represented by the terms of the current vector I[¢], the torque matrix
G[va t] and the number of pole pairs p.
Namely, the torque is given as the real part of the following equation:

T=(p/2 I* [ )G[vnt T[], - - o v oo eereeer e, (8)
where superscript * and ¢ denote the conjugate and the transpose of the current vector I[ ].
For mathematical convenience, the complex stator currents iq, i», ic are defined by the

following equation whose real parts give the original coordinate stator currents (in three phase
stator circuits).

le 1 1 1 0

is = ,/% 1 exp(—j2x/3) exp{—jdn/3) || is

ie 1 exp(—jdr/3) exp(—j2r/3) isn
.............. €))

where the stator phases are represented by suffixes a, b and c.

3. Numerical method of solution

By mean of Eq. (3), Eq. (1) can be rewritten

(A/ADILE)=S[tI[E)FULE], « v vrrvrrrennanaenenns (10)

S[¢]is a square matrix of order 4 and U[t]is a column vector of order 4.S[¢]and U[¢]are
given by

Slt]l= =L [vatl R+ vnGvatl)y - covrevrneeonennanen. (11

Ult)=L  [Wall VIl v v rrer oo aeenieaienn. (12)

A formal solution of Eq. (10) can be obtained as

18]=PLI0)+PLA [T PolAULAdr - reeeeees (13)

where the matrix 7[0] and P[] are respectively the initial values of current vector (cloumn
vector of order 4) and the state transition matrix (square matrix of order 4). The state transi-
tion matrix P[ ¢Jmust satisfy the following equation
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(d/dd) P[e)=S[tP[t]. - ----- e (14)
The initial conditions of Eq. (14) are
P[O]:/.‘ ......................................... (15)

where /., denotes the unit matrix of order 4.

The state transition matrix P[ ¢]is of paramount importance in the solution of Eq. (10).
A staisfactory solution of Eq. (10) depends on finding efficient methods of determining the
state transition matrix P[¢]. Various numerical methods have been proposed to find P[#](see
reference [7]).

As the principal purpose of this paper is to solve Eq. (10) by the most simple numerical
method. It is assumed that the elements of the matrices S[t]and U[ ¢] of Eq. (10) keep con-
stant values in a small time interval h. Then, Eq. (10) can be solved as follows:

I[t+hl=exp(S[i+ ARRI[t]—t/.—exp(S[t+ ARIWIS [t + ARIU[t+ AR), - - -(16)

where value for the parameter A in Eq. (16) will be given later.

A further approximation is applied to the matrix exponential function exp(S(t+ Ahlh),
namely

exp(S[t+ AnlN=1/.—(h/2)S[t+ ARNV/ i+ (h/2)S[t+ Ahlh- - - - - . (17)

The state transition matrix P[t+ h] is approximated by the central difference method as
follows:

Plt+hl=1/—(h/2)S[t+ ARN Y/ +(h/2)S[t+ ARV P[] - -+ - - - (18)

To determine the value of the parameter A, Eq. (18) is rewritten by using a Taylor series

expansions of the matrices S[¢t+ Ah] and|/(—(h/2)S[t+ ARN 1/ +(h/2)S[t+ AR]L.
These Taylor series expansions are

Slt+ Ah]=S[t]+AhdS[t]/dt+(Ah)f(l/2)d’S[t]/dt’+
+ oo oo +{ARY(1/ENA*S[ L]/ d R,
and

1/o=(h/2)S[t+ AR/ +(h/2)S[t+ ARl =/ + hS[t+ AR]+
+(h*/2)S [ t+ AR)+ « + « « +(A*/25")S" i+ AR).
Therefore, Eq. (18) can be rewritten as follows:
Plt+h)l=1/+ hS[t]+(R*/2)(S?[t]+2 Ad S[t)/dt) +(A*/6)(1.5 S*[ t]

+34°d*S[¢)/dt*+3A4S[t)dS[¢)/dt+34dS[¢)/de S[E) + - - -
v Pl e (21)
A rigorous Taylor series expansion of the state transition matrix P[t+ A] is described in
referenc [7]. It is

Plt+hl=1/c+hS[t]+(A'/2NS?[t]+d S[tl/dt)+ (A3 /6)(S*[t]+ . (22)

d*S(t)/de*+ S[tld S[t)/dt+2d S[tl/de S(E)+ « - - - 1 P[],

From a comparison of Eq. (21) with Eq. (22), because with this value A=)4 the approxi-

mate state transition matrix Eq. (21) coincides with the rigorous expansion Eq. (22) up to the
first three terms, the following value of the parameter A is shown as the most suitable,
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S 23)

To summarise this section, the formula for the linear simultaneous differential equations
with periodic coefficients is given as

It+hl=1/c—(h/2)S[t+ ARI/ +(h/2)S[ 2+ ARD TLE]+ UL+ ARDL: - - -(24)

If the parameter A in Eq. (24) is 1/2, then the approximate state transition matrix Eq. (21)
coincides with the rigorous expansion Eq. (22) in the first three terms. This method is called
the “Improved central difference method”. If the parameter A in Eq. (24) is 1, then this meth-
od is the same as described in reference [6] (the central difference method) and the approxi-
mate state transition matrix Eq. (21) matches the frist two terms of the rigorous expansion Eq.
(22). In the case of linear simultaneous differential equations with constant coefficients, the
formula denoted by Eq. (24)(A=1/2) is reduced to the central difference method.

4. Numerical solution

The various parameters of a motor used in the numerical examples are listed in Table 1.

Table 1
Various constants of the calculated motor

Voltage Ve=v2/3 200 (Vi
Currents Initial currents are all zero.
Angular velocities Ys=100x (rad/sec)

Va=90nr (rad/sec)
Resistances Rs=R,=5 (Q)
Inductances Ls=L,=0.31831 (H)

M,=0.30239 (H)

Mi»=0.30239/(19 X 19) (H)

When we consider only the 19th space harmonic wave, the fundamental equations can be
reduced to a set of linear differential equations with constant coefficients, as shown in Ap-
pendix 1. To solve the coupled linear differential equations with constant coefficients, the Pade
approximation method is known to be quite effective, although this method is not applicable to
general problems of the polyphase induction motor including other space harmonic waves.
Therefore, we obtain most accurate values for theoretical comparison by this method with very
small stepwidth.

Eq. (1) is numerically solved respectively by the improved central difference method, the
central difference method, the trapezoidal rule and the Pide approximation method
(h=0.000001). A description of these methods is given in the Appendix 2.

The results of the numerical solution without considering the 19th space harmonic waves
are shown in Fig. [1], fairly good results are obtained by any numerical method by using a
small stepwidth (h=0.00001 or 0.0001). However, it is obvious that the improved central dif-
ference method is one of the most effective numerical methods.
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(a) Improved central difference method.
(b) Trapezoidal rule.
(c) Central difference method.

Fig. 1. Comparison of the results not considering 19th space harmonic
wave computed by various numerical methods:
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When the 19th space harmonic wave is taken into account, the same conclusions are ob-
tained by the results of Eq. (1) which are shown in Fig. [2].
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Fig. 2. Comparison of the results taking into
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account the 19th space harmonic wave:
() Improved central difference method.
(b) Trapezoidal rule.

(c) Central difference method.
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The state transition matrices of the rigorous Taylor series method Eq. (22), the improved
central difference method, the trapezoidal rule and the central difference method are shown in
Table 2. Table-2 shows that the state transition matrix of the central difference method is infe-
rior in accuracy to the other methods. The third term in the state transition matrix of the im-
proved central difference method is somewhat more accurate than the third term of the trape-
zoidal rule. Furthermore, the trapezoidal rule needs more terms such as S[t] or S[z+A]
and U[t] or U[t+ h). Therefore, the improved central difference method is superior to the
others,

Table 2
Comparison of the approximate and the rigorous state transition matrix

Rigorous Taylor series expansion

Plt+hl=1/.+ hS[t]+(r/2)(S*[t]+dS[tl/dt) + (R /6){S*[ ]+ d*S[#)/d ¢
+ S[tldS[tl/dt+2(dS[t)/dySED + « » « - 1P[1]

Improved central difference method

Pli+hl=1/.+ RS[t]+(h*/2)(S*[$]+dS[tl/dt) +(h*/6)(1.58°[ ]

| +0.75d*S(¢)/d*+1.5S([$)d S[t)/d¢+1.5(d S[&)/d 1) S[¢])

+ e e }P[ t] :

Trapezoidal rule

Pli+hrl=1/.+hS[t]+(*/2)(S*[t]+d S[t]l/dt) +(r*/6){1.58°[¢]
+1.5d*S[t)/di*+1.58[t]d S[t)/dt+3(dS[t)/ds) S[&])
+ o« 1P[1]

Central difference method

Pli+hl=1/.+ hS[t]1+(A*/2)(S*[t]+2dS[t)/dt) +(h*/6)(1.58%[ ]
+3d’S[tl/di*+3S[t]ldS[¢l/di+3(d S[tl/dt) S[t])
+ oo jP[]

Some examples of numerical solutions Eq. (1) and Eq. (8) computed by the improved cen-
tral difference method are shown in Fig. [3]
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Fig. 3. Examples of the numerical solutions computed by the
improved central difference methods, using the stepwidth
h=0.001.

(a) Numerical solution of the stator current

(b) Numerical solution of the torque,

(c) Numerical solution of the torque (the envelop in figure
shows the region of the torque vibration due to the
19th space harmonic wave).
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5. Conclusion

As shown above, this paper has proposed a simple and effective method applicable to the
problem of space harmonic waves in polyphase induction motors. This method is superior in ac-
curacy to the trapezoidal rule in spite of its simpler algorithmic form. A stepwidth can be
chosen here by about 20 times as large as the one necessary in the method reported in reference
[6]. It is an improvement on the method reported in reference [6].

For further study, the author plans to work out another numerical method for space har-
monic waves in polyphase induction motors, taking into account the full system of mechanical
equations.
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Appendix 1. Linearized mathematical model
Eq. (1) in section 2 can be transformed into the linear simultaneous differential equations
with constant coefficients by using the matrix C{vnt] (commutation matrix) for space har-

monic waves. The commutation matrix C[vat] (diagonal matrix of order 4) for the 19th
space hafmonic wave is

Clvatl=11, exp(—j20vnt), exp(—jvnt), exp(—j19vat)] - -+ -~ (A1)

The linear simultaneous differential equations with constant coefficients are written as fol-
lows:

VC[ t]=ZCIC[ t]. ........................... (A-2)

The transformed voltage vector (column vector of order 4) V¢[t]l=C*[vat) V[it] is

Ve(tl=1Vsexpl(jvst), Viexp(—jvst+j20vat), 0,0} - -« ccvonv (A-3)

The transformed impedance matrix Z°=C*[vat]Z[vat]Clvat] (square matrix of
order 4) consists of the resistance matrix R, the transformed inductance matrix L€ and the
transformed torque matrix G¢ , namely

ZC=R4+va G +Ld/dt),s«vvrvvereerrerencns (A4)

where the resistance matrix R is the same as Eq. (4), and the transformed inductance matrix L
(square matrix of order 4) is
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Ls| 0 | M| M
pe— | O Lo | Mo[M | (A-5)
My {Mw|Lr| O
Mw|M | O | Ly
The transformed torque matrix G°¢ (square matrix of order 4) is
0 0 0 0
SO N s Y2 e e 7 4
— M — M —jL, 0
—j19M, | —J19M, 0 —j19L,

As each current in the current vector 7[ #]is an unknown quantity which must be com-
puted, the transformed current vector J°[ {]=C*[vn t]I[ ] is represented by the new stator
positive phase current i$,, the new stator negative phase current {s» , the new rotor positive
phase current 7, and the new rotor negative phase current {7, . The transformed current vec-
tor 1°[t] ( column vector of order 4) is

IC[ t]= ' igm igﬂs igth iﬁn!.
The torque T is represented by the transformed current vector I°[t], the transformed

torque matrix G° and the number of pole pairs p. Namely, the torque T is given as the real
part of the following equation:

T=pI™*[t]1G°I°[¢].

Of course, the real part of Eq. (A-8) equals the real part of Eq. (8).
The original coordinate stator currents (in three phase circuits) are derived as the real part
of the following equation:

le. 1 1 1 0
i =,/i§ 1| exp(—j2x/3) | exp(—jdn/3) i% .
ic 1| exp(—ij4x/3) exp(—j2x/3) iSnexp(—j20vnt)| . . . . (A9)

Appendix 2. Other numerical methods
1) Trapezoidal rule: Application of the trapezoidal integral formula to Eq.(10)in section 3 yields

I+ R =18 =(h/2)(S[t+ Rl t+ hl+ S[ )+ ULE+ A+ ULED. - - - - - (A-10)

Therefore, the following numerical solution of Eq. (10) can be obtained

Ift+ hl=V/—(h/2)S[t+ Rl +(R/2)S[ 21 [ t]

.......... (A-11)
+1/i—(h/2)S[t+ Al (R/2HUL+ A1+ UL
In this case, the state transition matrix P[ ¢+ h]is approximated as follows:
Plt+hl=1/.—(n/2)S[t+ AN "1/ +(R/2)S[ 11 P[]
or  =l/+hS[t1+(r*/2)(S?(i]1+dS[t]/dD)+
+(h*/6)(1.5 S [t]+1.5d* S[t]/d¢*+3(d S[l/d ) S[i]
+1.5S[8)dS[2)/dt)+ « o e dP[1) - ocvemenann (A-12)
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2) Pide approximation method: From Eq. (16) the numerical solution of Eq. (A-2) can be ob-
tained as follows:

IFt+ hl=exp(S I (11— 1/i—exp( SR S U[t+0.5R] - - - - - - (A-13)

where the parameter A in Eq. (16) is conveniently selected to be 1/2, and the matrices in Eq.
(A-13) are

SCm — LE V(R4 Vg GS), v o vvvrrrrronmenenaneeeenneienns (A-14)

USTE = LC VO[] - rvvovmemrmmea e ee (A-15)
The matrix exponential function exp(S°h)in Eq. (A-13) is approximated by a Pade ap-
proximation [8], that is
exp(S°h)=112—6 S A+ (S°A}I12+6 S h+(S°h)*
or =/i+hS+(hS)/2+(hS)/6+(RS)/24 .. ... ...... (A-16)

+ LI I +'
As the righthand term of Eq. (A-16) is a relatively good approximation of the matrix ex-

ponential fucntion in Eq. (A-13), it is expected that the numerical solutions computed by the
method of Eq. (A-13) using the Eq. (A-16) will yield fairly good results.

Notations

Vit =l Vsexp(jvs t), V¥exp(—jv.t), 0,0}, voltage vector

I[t] = 1{isps Lans Lror irnl, CUITENE VECtOT

Z[vatl = R+vnGlvatl+ Llvatl(d/d¢t), impedance matrix

R =[Rs, Rs, Rr. R-], resistance matrix

L{vat] =inductance matrix

Glvatl =(d/dt)L[vat](1/va) , torque matrix

S(i] = — L {vat) R+ v G[va t]) , coefficient matrix of the differential state equation
Ulil =L"[vnt] V[ 1], input vector of the differential state equation

Pli] = state transition matrix

Clvat] =commutation matrix of the 19th space harmonic wave

velil =C*[vat]V[t], transformed voltage vector

I°[t] =15%, iSns 150, i%a}, transformed current vector

VA =C* (v t]Z[va t1C[va t)or=R+v, G°+L°d/d ), transformed impedance matrix
L® = transformed inductance matrix

G° = transformed torque matrix

Sc¢ =— LY R + va G ) coefficient matrix of the linear differential state equation
Uelil =1, v ¢], input vector of the linear differential state equation

1(0] = initial current vector

T = torque (V-m)

¢ = time (sec)

h = stepwidth (sec)

Um = mechanical angular velocity transformed into electrical angular velocity (rad/sec)
Vs = angular velocity of the impressed voltage source

Vs = amplitude of the stator impressed voltage
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= number of pole pairs

J =y —1, imaginary unit
k = positive integer
/s = unit matrix of order 4

Rs, R, refer to the stator and rotor resistances, respectively.
Lg, L,  refer to the stator and rotor self-inductances, respectively.

M, M, refer to the fundamental and 19th space harmonic wave mutual inductances, re-
spectively.

Superscripts *, ¢, —1 and c refer to the conjugate, transpose of matrix, inverse matrix and
transformed matrix by commutation matrix C[v,¢], respectively.

Subscripts g, b, c refer to the stator a-phase, b-phase, c-phase quantities; s r refer to the stator
and rotor; and p, n refer to the positive and negative phase quantities, respectively.
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