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Digital Simulation of Polyphase Induction Motors
Yoshifuru SAITO* and Kimio Mivazawa **

Abstract

The fundamental equations of polyphase induction motors ( linear simultaneous
differential equations with periodic coefficients) are directly solved by finite
difference methods for balanced and for unbalanced conditions.

Principal symbols
V(i) = {Va, Vo, Ve, Va, Ve, v, |, voltage (column) matrix.
1] = {ia, Lbs Lcs Las e Ert, current (column) matrix.
Z[ 4 wa] = R+ waGlt wal+ L[t ws](d/d¢), impedance matrix.
R = [ 7a, o, Te\ Ta, Te, T,), resistance (diagonal) matrix.
Glt wal = (1/wa)(d/dt)L[t, wa], torque matrix.
L[t wal = |+ L'+ Ml t, wa), inductance matrix.
l = {la Loy Lcy Lay ey 1), leakage inductance (diagonal) matrix.
L' = self-inductance matrix.
Mt wn) = mutual inductance matrix.
S[t wa) = L7t wnl(R+waGlt wal), coefficient matrix of the
differential state equation.
C = current connection matrix.
rii = |y, I By, L1, new coordinate current (column) matrix.
8 L =(w—wn)/w, slip.
L:JCOS(%—Jzﬂ) denotes the i-th row and j-th column element in self-inductance

. matrix.
i—J , . .
Miscos{want+ ——3—2:1) denotes the i-th row and j-th column element in mutual
inductance matrix.

B' denotes the transpose of matrix B.

B! denotes the inverse of matrix B.

/n denotes the unit matrix of order n.

w denotes the impressed voltage source angular velocity (rad/sec.)
wn denotes the mechanical angular velocity transformed into the

electrical angular velocity (rad/sec).

D denotes the number of pole pairs.
T denotes the torque (N—m).

t ~ denotes the time (sec).

At denotes the stepwidth (sec).

A

denotes the parameter of approximate exponential function.

* Research assistant
** Graduate student
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Subscript

a,b,c,d,e and f refer to the a,b,c,d,e and f-phase (branch) quantities respectively.
i and j refer to the row and column in inductance matrix respectively.

1. Introduction

Among all types of alternating current motors, the one of induction type is by far the most
popular and is used very widely, which is quite often designed for use on polyphase circuit
(usually three phase) over whole horse-power range. A polyphase induction motor has many
excellent characteristics such as the simpleness of its structure, inherent self-starting character
and high reliability in its behavior. This machine is equipped with both a primary winding
(usually stator) and secondary winding (usually rotor) as shown in Fig. 1, in normal use an
energy source is connected to one winding alone, the primary winding.

The relationships are Ta

described by inductance -
matrix L (£, wa). //

- S~
~ Va
Stator
A

Neutral line

Vs Va

Ve

Fig. 1. Circuit diagram of the three phase induction motor.

Currents are made to flow in the secondary winding by induction, thereby creating an
ampere-conductor distribution that interacts with the primary magnetic field distribution and
produces a net unidirectional torque.

Many theoretical studies has been performed for the transient and steady state in polyphase
induction motors for a long time {1 to 9].

In these studies, very complex and tedious tensor transformations have conventionally
performed.

At starting or controlled by semiconductor elements, we choose some combinations of
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stator voltages, stator resistances and rotor resistances. By these choices, two cases are classified
“Balanced conditions” and “Unbalanced conditions”, which are explained in detail in
Appendix.

" In this paper, the fundamental equations of the three phase induction motor, for balanced
and for unbalanced conditions, are directly solved by numerical methods instead of
performing tedious tensor transformations mentioned above. The results are compared with
those of conventional tensor transformation methods and also with experimental results.

2. Fundamental equations

The circuit diagram of the three phase induction motor is shown in Fig. 1 and is composed
of six main branches, three of stator and three of rotor.

The set of Kirchhoff’s equations for the circuit system consists of simultaneous six
differential equations and is preferably expressed as a matrix equation between a voltage matrix
(vector) V[ ¢] and a current matrix (vector) I[ ). The first three components of voltage matrix,

Ya, Vs, Ve, are respectively impressed voltages of stator branches and the remaining three,
Va, Ve, vy, are those of rotor branches and each component of current matrix has a
corresponding meaning.

Denoting impedance matrix by Z[% wa) , the fundamental equation is given as

VIR=ZI wnld[E] -+ ¢ v r o v v oo (1)

where the quantity w= is a mechanical angular velocity.
The torque T of the motor is given by the number of pole pairs p, current matrix I{tland
torque matrix G[t wn) whose meaning will be given later, as

T=(p/D I H)GLE wnlI[t] + < = - = oo 2)

This equation is called torque equation.

Impedance matrix Z[% wa] is given by the terms of three matrices, resistance matrix R,
torque matrix Gt wa] and inductance matrix L[ wn] as follows:

Z[t wn]=R+ wnGlt wnl+ L[t walld/dt) - - - - - - - - B 3)

The resistance matrix R has only diagonal elements, of which the first three, 72, 7, 7., are
respectively resistances of three stator branches and the remaining three, 7., re, 7/, are rotor
ones. Inductance matrix L[# w=] is composed of leakage inductance matrix [, self-inductance
matrix L’ and mutual inductance matrix M {, wn], and this is as follows:
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L{t wnl=1+L+M} wn)

la+Lu Li:cos (27/3) Liscos (4 7/3)
Is+Lxn Lascos (27/3) %
lc+ Lss
SYMMET — %
Mcos( wnt) Miscos(wmt+2n/3) | Miscos (wnt+4n/3)
% Macos(wnt—27/3) | Mascos(wat) Mascos (wn E+217/3)
Mycos{wnt—4r/3) | Msscos(wnt—2n/3) | Mascos(wnt)
la+ L Liscos(27/3) Luscos (47/3)
% e+ Lss Lsscos (27/3)
—RICAL
ls+ Les

where L, is (ordinary) self-inductance coefficient and M, is (ordinary) mutual inductance
coefficient.

Torque matrix G[# wa] is obtained by differentiating inductance matrix L[ wa] with
time ¢ and by dividing by mechanical angular velocity wns . That is

Glt wn)l=(1/wa)d/dD LIt wn) = - - = - - o e (5)

In order to solve the eq. (1), it is neccesary to take the following two facts into consideration.
The third through sixth components of the voltage matrix V[ ] are always zero, e.g. va=ve=v,=0
and three other components, stator voltages Va, Vs, Ve satisfy following relation for
balanced conditions, as shown in Appendix, ve+vs + v =0.

When balanced conditions are satisfied or neutral line is disconnected, there exist two
respective relations among three stator components, las
components, i4, e, iy, Of the

latieti,=0

As the mechanical angular velocity wm is smaller than, or at most equal to, the angular
velocity w of stator impressed voltage in actual operation of the three phase induction motor
without space harmonics [10]. the time variations of matrix elements in inductance matrix
L[t wa) are slow at most equal to the time variations of stator impressed voltages.

Therefore, we assumed that the elements in inductance matrix L[% w=)] take constant
values at time interval from ¢ to ¢+ A% . Namely, the fundamental equations of three phase

iv, Ie, and among three rotor
current matrix J[t] ., i{.+i.+i.=0 and
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induction motor reduce to linear simultaneous differential equations with constant coefficients
during interval from ¢ to 2 +A¢.

Now that eq. (1) can be taken as linear simultaneous differential equations with constant
coefficients, the difference method is applicable to numerically solving it.

By considering eq. (3), eq. (1) can be rewritten as

(d/anIit)=—Slt wad L +L b wa) V2] - -« oo e (6)

where the matrix S[¢# wn] has following meanings.

Sit wnl=L'[t wnl(RtonGlt wal) « « « « « oo v v v (7

Then we formally get a following equation of difference methods.

Hi+Atl=1tlexp(—AtS[t+ AL wnl)+
/o—exp(—AtS[i+AL wal)l (R+waGlE+AL wal) ™ VIE+4H - - - - ®

where the unit matrix of order 6 is denoted by /g,
A further approximation is applied to the exponential function exp(—AtS[t+A4t wal),
as in the following, by introducing a new parameter A.

exp(—AtS[t+AL wal)=(/o+A ALS[t+AL wal)'(/o—
| (1—A) AtS[t+ At wal)- - - oo oo e e ®)

According to the value of the parameter A4, the approximation is classified into the well
known centered difference method (4 = 0.5), forward difference method (4 = 0) and backward
difference method (4 = 1) [11]. In this paper, practical computations are carried out with 4 =
0.5, and compared with results computed by other values of 4 as discussed in section 3.

Eq. (1) is directly solved by the numerical method for balanced conditions, because no
currents flow in the neutral line if the neutral is connected. However, six relationships implied
in eq. (1) are excessive for the majority of situations and it is desirable to reduce the number of
independent variables. Since we are dealing with star-connected machines with no neutral line
as shown in Fig. 1, the currents ic and i, can be eliminated by use of the following relationships
which are explained in Appendix.

(ia) [ 1 0 0 0

i» 0 0 0 (i

L T e 0 2 (10)
ia o 0 1 o} |i&

e o 1| L&

\i/J L 0 0 -1 -1)

Hereafter we denote the new current vector in the right hand side of eq. (10) by 7 ¢], and
define the current connection matrix C as

(1 0 0 0)

o 1 o0 o
c=|7t TV 0 0L (11)

o 0 1 o

0 0 0 1

Lo o0 -1 -1
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Then we obtain the transformed equation of eq. (1) and torque equation in terms of the
transformed current vector I'[ ¢], and they are described by eq. (12).

I[t)1=crltl
C'V[t]=C'Z[t wal CI'[1] <+« v v oo e e oo e e (12)
T=(p/2)I''[t]C'G[t walCI'[t)

The transient and steady state characteristics of the three phase induction motor for
balanced and unbalanced conditions are computed by eq. (12), using the procedures of eq. (8)
and eq. (9).

3. Numerical solutions

The various constants of a motor used in calculation are listed in Table 1 for balanced
conditions, in Table 2 for unbalanced conditions, and the constants of the actual experimented
motor are listed in Table 3.

Table 1. Various constants of the calculated motor for balanced

conditions.
w=100x (rad/sec)
va=y2/3 200 sin(w?) )
Voltages vy=+2/3 200 sin{wt—21/3) v)
ve=+v273 200 sin(wt—4 x/3) )
Va=Vv.=v,=0 )

Initial currents are all zero,

Stepwidth A $=0.00005 (sec)
Number of pole pairs p=2
Ta=Te=7.=1.13 Q)
Resistances
Ta=Te=1T1,=1.25 ()
Lw=Ly=Ly=L,y=L;=L»=0.11466 (H)
Lu=Lss=L¢=Lus=Li=Lsc=0.11466 (H)
Inductances M=Ms=M:=M..=Mx=0.109 (H)
Mae=Ms=Mys=M;s=0.109 (H)
la=lo=1lc=1ls=1.=1,=0.00533 (H)
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Table 2. Various constants of the calculated motor for
unbalanced conditions.

(a) Unbalanced stator Va=+ 2/3 200 sin ( w t). Vo=vc=0 W

impressed voltage

The other constants are same in Table 1.

(b) Unbalanced stator 1.=10.0 Q)
resistance. The other constants are same in Table 1.

(¢) Unbalanced rotor 74=10.0 )
resistance,

The other constants are same in Table 1.

Table 3. Various constants of the experimented motor for
balanced and unbalanced conditions.

w=100x (rad/sec)
va=+v2/3 200 sin(wi) v)
Voltages v»=v2/3 200 sin(wit—2r/3) v
ve=+v2/3 200 sin(wt—47/3) v)
Ve=Ve=7v,=0 v
Stepwidth  A}=0.00005 (sec)

Number of pole pairs p=2

Te=To=1.=10.835 ()
Resistances

T4a=Te=71,~1.0 f2)

Lu=Lzz=L;3=L|z=L|3=L23=0.245 (H)

Lu=Lss=L“=L45=L.5=L55=0.0369 (H)

M|4=M15=M|e=M24=M35=0.0952 (H)
Inductances

M=M= Mys= Mys=0.0952 (1)

la=1=1.=0.02119 (H)

la=1l.=1,=0.003194 (H)
Unbalanced stator resistance. 7,=30.835 ()

The other constants are same in above table.

For the comparison, we solve numerically the simultaneous differential equations linearized
by the conventional tensor transformation methods [4 to 9] by using the backward difference
method, centered difference method and forward difference method. Among the results
obtained by each method, there are only small differences. These results also agree fairly well
with our numerical solutions of the eq. (1) or eq. (12) for balanced conditions computed by the
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centered difference method. Rigorous analytical solutions are obtained for balanced conditions
by the conventional revolving field theory [4 to 9]. Numerical solutions by our method
reproduce these rigorous solutions within discrepancies of a few percents.

The numerical solutions of eq. (1) or eq. (12) for balanced conditions computed by the
backward difference method were somewhat small compared with the results obtained by the
centered difference method. On the contrary, the forward difference method yielded larger
results. Therefore, we adopted the centered difference method for the digital simulation of
polyphase induction motor.

Some examples of numerical solutions of eq. (12) for balanced conditions computed by the
centered difference method are shown in Fig. 2. The steady state numerical solutions of eq.
(12) for balanced conditions computed by the centered difference method are shown together
with the above mentioned rigorous solutions in Fig. 3. Some examples of numerical solutions of
eq. (12) for unbalanced conditions computed by the centered difference method are shown in

Fig. 4, and the comparisons of the steady state experimental and computational results are
shown in Fig. 5.
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' (a) Unbalanced stator impressed voltage (s = 0.95).
(b) Unbalanced stator resistance (s = 0.1).

(c) Unbalanced rotor resistance (s = 0.1).
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(b) Unbalanced stator resistance.
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4, Conclusion

One of the merits of our direct integral method is that mathematical treatments are common
both for balanced conditions and for any unbalanced conditions, although the conventional
tensor transformations are confronted with serious difficulties in obtaining a linearized model
for unbalanced conditions. So the method proposed here is not only useful for the anlysis of
the polyphase induction motor, but may be applicable to any other alternating current
machines.

The method is so simple in algorithm that computer program of our direct integration
method can be easily written down directly from the fundamental differential equations
without any other manual works, and can be used for any unbalanced conditions, therefore,
programming effort is the least but obtained program has the most generality.

If the relevant stepwidth &t ischosen, then the numerical solutions obtained by our direct
integration method have enough accuracy for engineering problems; in this paper, sufficiently
accurate solutions are obtained by the selection of stepwidth o¢ which is enough small to obtain
the correct wave forms of the stator impressed voltages.

Finally, we have recently proposed quite effective digital simulation method of polyphase
induction motors. We wish to apply the direct integration method to the problems of
polyphase induction motor supplied with the nonsinusoidal waves as the stator impressed
voltage, and one of the authors (Saito) now intends to apply the method to the , polyphase
induction motor with space harmonics [10].
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Appendix: Balaced and Unbalanced conditions

If the conditions that the stator impressed voltages (in this paper, sinusoidal waves)
Va, ¥» and vc have the same amplitude, same angular velocity and relative phase difference
2x/3 (in the case of three phase voltage ) are satisfied, then such a case is called “Balanced
stator impressed voltage”, and the case in which one or more conditions are not satisfied is
called “Unbalanced stator impressed voltage”.

If the conditions that the stator resistances 7a, 7» and 7¢, rotor resistances 7a .7e
and 7, stator leakage inductances l, I» and I, rotor leakage inductances ly, l. and
l,. stator self-inductances L., Ly, .. and Ls, rotor self-inductances L., Lus, .. and Les
and mutual inductances M., M, .. and M, are same values respectively, are satisfied,
then such a case is called “Balanced impedance” and the case in which one or more
conditions are not satisfied is called “Unbalanced impedance”. Especially, if the stator or rotor

resistances are not same values, then such a case is called “Unbalanced stator or rotor resistance’
respectively.
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In general, if the conditions of balanced stator impressed voltage and balanced impedance
are satisfied, then such a case is called *‘Balanced conditions” and the case in which one or more
conditions of balanced stator impressed voltage and balanced impedance are not satisfied, then
such a case is called “Unbalanced conditions™. -

In balanced conditions, from the conditions of balanced stator impressed voltage, following
relationship is established.

Vot Vo + Ve =0 (A-1)

The examples of eq. (A-1) are shown in Table 1 and Table 3, and from the conditions of
balanced impedance, as example is shown in Table 1, the following relationships are established.

latistic=0 (A-2)
l.d.+ ie+l:f=0 (A'3)
The examples which satisfy the eq. (A-2) and eq. (A-3) are as follows:

la=Issin(wi—h)
iv=Issinlwt—h—22/3)
ic=Issinlwi—h—4x/3)
ta=Irsin(swit—k)
le=1Irsin(swi—k—2x/3)
ir=1I,sin{swt— k—41x/3)

Where Is, I, h,hand & are constants respectively.

Therefore, in balanced conditions, if the neutral line is connected or disconnected, the same
numerical solutions can be obtained from eq. (1) (which is written as it were equipped with the
neutral line) in section 2.

In unbalanced conditions, especially in unbalanced stator impressed voltage, the relatfonship
(A-1) is not established, and if the neutral line is disconnected (star-connected machine as
shown in Fig. 1), then the previously described relationships (A-2) and (A-3) must be
established.

Then, in unbalanced conditions, the relationships (A-2) and (A-3) must be introduced to the
fundamental equations as described by eq. (1) in section 2. Therefore, arbitary one independent
variable of eq. (A-2) and eq. (A-3) are represented by the remaining terms of eq. (A-2) and eq.
(A-3) respectively, and their relationships are described by the current connection matrix C [in
this paper, current . in eq. (A-2) and current i, in eq. (A-3) are represented by the
remaining currents in eq. (A-2) and eq. (A-3) respectively, as described by eq. (10) and eq. (11)
in section 2.], which is introduced to the fundamental equations and torque equation as
described by the procedures of eq. (12).

However, if the neutral line is connected, then the relationships (A-2) and (A-3) are not

satisfied, in this case, numerical solutions are obtained by the eq. (1) in section 2 without any
transformations [eq. (12) in section 2] .
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