EBAKFEZFEMERE VRS U
HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-03-14

Rates of Convergence in Central Limit
Theorem for a Class of Dependent RK-
valued Random Variables

HNEk, £ / KATO, Yutaka

EBARFEILEE

Bulletin of the Faculty of Engineering, Hosei University / jJEHKEIEE
HRER

13
19
24
1977-03

https://doi.org/10.15002/00004190



RATES OF CONVERGENCE IN CENTRAL LIMIT
THEOREM FOR A CLASS OF DEPENDENT
R*VALUED RANDOM VARIABLES

Yutaka KaTto*

In this note we shall give an estimation to the rate of convergence in central limit
theorem for a class of dependent Rk-valued random variables. Our method is based
on Skorohod vector embedding and is the same manner as Y. Kato [15]. Similar
results for independent random vectors have been obtained by many authors, for
example, Rao [1], von Bahr [2], [3], Bhattacharya [4], [5], [61. [7], Sazonov [&],
[9], Rotar [10] and Paulauskas [11].

Let {X,=(X.1 - X)) nez*} be a sequence of R=-valued random variables
with

(1) P{X,=C}=1
for each nez* and each iez,*, where 2t+={1, 2, ...} and z,*={1, 2, ---, k}. For each

n€z* and each i€z,*, let B, be a s-algebra generated by the random variables X,, ;
mez*, jez;,* and X,,, me&z,*. In particular, for each jez,*
By, 1= B, -
0,t M\E\/Z’ nyi—-1

where B, , is a trivial ¢-algebra for each nez*.
We define the random variables
Sn,? = E{X141,811Bs,1}, n€ztU {0}, iez*
and we also define the random indexes v, by the inequalities
(2) So, 8+ +Sv=1% I<NSSo, 8+ + 80,5 NEZY, [€2,*.
Finally, we define

¥a,1 Vara
Sn=(2 Xj,l’ ey 2 Xj,;,).
=1 =1

Throughout this note, we shall assume the following conditions :

(A) For each iez*, {X,,, B,,: nez*} is a sequence of martingale differences.
(B) For each ie2z,* it holds that

n
(3 h‘;os,.,fo‘(n) uniformly
for some monotone increasing function f,(n) such that

() LE8 _ogmy, L o),

REMARK : The relation (3) means that
O<B¢§T¢<°°!

where

n—o o

.. . n
- — 2
B.=liminf ess. inf Z0) h§=:os,,,, (@),

* Research assistant



20 PR(52.3) Rates of Convergence in Central Limit Theorem for a Class of Dependent --:.:-

7,=limsup ess. su ()
{ ”_’mp p fi(n) ; hyt ( )
Let @, denote the distribution of ‘/_ ——3S, and let ¢ be the standard normal distri-

bution on R~

THEOREM 1: Let {X,; ncz*} be a sequence of R*valued random variables satisfy-
ing the relation (1). Under assumptions (A) and (B), there exists constant M, such
that for sufficiently large n and any Borel sets A
log n

IQ (A)— (D(A)|<2k +O(AAY,

where

3
(log n)? (log n)2
p=CHECBEE gy, S8 LS
The constant M, depends on 7,, ---, 7, and C, the set A is the boundary of A and
(8A)" is the set of all points whose distances from 8A are less than .

In proving the theorem, we shall use Lemma 2, Lemma 3 of Kato [15] and the
following lemma. The one is a Skorohod vector embedding which is a corollary of
Skorohod embedding for martingale differences, see Kiefer [13] and Strassen {14].
LEMMA 1: Let {X,=(X,, = Xa»): n€2*} be a sequence of R*-valued random
variables satisfying assumption (A) such that for each i€2,* and nez*, E{X2 ||B.-1,:}
is defined. Then, without loss of generality, there is a sequence of independent
Brownian motions {w,(?); f€z,*} together with a family of non-negative random
variables {T,,; mez,*, i€z*} for each nez* such that

m m m
(& Toa)s - w ET0a)) = £ X, 2. e
=1 J=1 i=1
for each mez,*. Moreover if we define

Xl:f’ " X"l! jGZg-l"'}

% ™ —%{
Xl,h *tty Xm,l

w;(f), OStShélTn,;n J€Zi4*
F,t ™ =B, \/B .
w(t), OStShZOTn,t

then T,,; iS §m,™-measurable, E{T . ||Fn-1,«"™} is well defined and
E{T,,||Fn-1,: "} =E{ X0, &l|Fn-1,0™}
=E{Xa,"BR-,: a e,
for each iez,*, mez,*. If h is a real number >1 and E{X, *||8%.,,;} can be
defined, then E{T,,*||§n-1,™} is also well defined and
E{T M 1mt,6 ™} SLaEAX [ Fies, i )

SLE{Xn, ™82} a e,

where each L, is constant which depends only on A.

The phrase ‘without loss of generality’ in the above lemma is used in a same
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sense as Strassen’s one ([14], p.333). In this note we shall assume that the new
probability space satisfies the same condition as Kato’s one [15].

REMARK : In the above lemma, we set B9 ,=8%,., for i=2, 3, -, 2 and BY,

”n
is a trivial o-algebra. Furthermore, we set §, ™ =%o,‘m1\/58[w,(t), 0=t émngm, "

jez,*-l] for i=2, 3, .-, k and §,,,™ is a trivial o-algebra.

We can now prove our theorem as follows. It follow from Lemma 1 that there is a
family of non-negative random variables {T,,,; mezy*, i€z} such that for each
mezyt '

1 m nt

(5) —I—(X1+"‘+Xm)=(wl(2Tj,l)r s, wk(ZTj,k)) a. e,
nf j=1 =1
where the number N, depending only on 2, will be defined as follows. From the
definitions of B9 ; and B, ,, there exists a positive number my(i, #» n) such that
mzmy(i, j, n) implies

| E{ X501, 1B .} — E{X%41,:]|B, }<1/n?
for each jezt*U{0} and each iez,*. We define

N =max{n? (maxm,(i{, j, n))}.
ez}

jE 2”2+U{0}
Since it follows from assumption (B) that for sufficiently large n, vni(@)Sn? a.
€., we have

(6> Qu=P{(w( 517, - w$7,))4]
J= Jj=
and
(7) 2A)=P{w, (1), -, w(1))€A}.
From the property of the stopping times T,,, we have
va,i+[(log n)%]
P[(w,(s,), ey We(Sp))EA-n for some (s, -+, SpE€ X U m,i}

ezt m=vg;

=Q(A=

P{(w,(s,), ey We(Sp))EAn for any (s, -, sp)€ X

ezt m=y,,

vaat+[(log n)?]
U m,i}

m m-1 1 3
where Im,i=[2 T ZT,,,] and p,:Ck’&og,n—).

=1 i=1 n'f
Furthermore, it follows from the definition of N, assumption (B) and Lemmas 2,3 of
Kato [15] that there exist sets B;, i=1, 2, .-, & such that, for sufficiently large =,
P(B©)<3/n and

vna+[(log n)?
6ﬂ,i=ln + Ve JTJ"‘ M.
(DEB‘, ].=V,.,(+1 n

Therefore, we have in the same manner as Kato’s one [15]

(8) QAT +PiEku D), — nlu)ean)

where 7y, 7, -, 7, are random variables satisfying the following conditions :
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(1) 7y 72 -, T, are pairwise independent and are independent of all the w,(#),
j€*.
. ¥n. Y,
() For each iz, P{r,e[ NT0 O T,,¢+3n,¢:|}>1-—1/n.
=1 i=1

From the definitions of N, v,; and Lemma 2, Lemma 3 of Kato [15], there exist con-
stants M*, iez,* such that

P[l—M*lOgn

S S1+Mp* log"}
n ne

-l ) (el S )+
>1 n nsz ( €Xp n i Bt +Cz »
where C,=2(1+¢/2)C% C,=C® and the constant M,* depends only on C and 7,.

Therefore, we have from (8)
(9) QS+ L s Ln) (oo 2 Zm)) 4
+ P{(w, (L), -, wy(1))€Ar},

where

gq-

—crrlog ) M, (log n)’f M= (Zk )
nt nt =

In an analogous fashion, we can show that

(10 Qf.(A)>——— )kj——fr‘(—g—n) (exxn{——fr’( g )}+C)

+P{(w, (1), -, w(1))EA}.
Thus, it follows from (7), (9) and (10) that
k
Q) OIS+ B f (o) (exel Do 2o 4)
+P{("}l(1)v R} wk(].)E)aA)”},
so that, it follows from (4) that for sufficiently large =

log n

|Q:(AD) —P(A)| =2k +0((0A)).

n‘f
The proof of Theorem 1 is now complete.
REMARK : We can prove in the same manner that for any >0

|Q:CAY—B(A)| <2k 08"

+@((0 A
nr
where

(log n)“" ~1(log n)?
—.

n'f ne -

7= Ck’

Let & be the class of all Borel-measurable convex subsets of R* then B. von Bahr
[2] proved the following lemma. - '
LEMMA 2: For all 2>>0
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k41
0 cn<2”rr( o,
gg% ((eOMH=

k
r(z)
where I'(-) is a gamma function.
As a corollary of Theorem 1 we have the following :

COROLLARY 1: Under the same conditions as Theorem 1, there exist constants M,
and M, such that for sufficiently large »n

sup [Q,(C)—2(C)|
Ce®

h,

( E+1 ) s
z 3
<oplog 2 ot zk {M Llog 1n) +Coprilos ,") }
nt 1’(__) n? nt
2
3
<pg, ognY
n?

where fhe constant M, depends only on % and M,.

Let k=2. Denote by ©(m) the class of all Borel subsets of R? each having a
boundary contained in some rectifiable curve of length not exceeding m. It is obvious
to show that for any De®(m) and any ke, 1)

O(OD™=2(m+1)h.
Then we have the following corollary.
COROLLARY 2: Under the same conditions as Theorem 1, we have
sup )IQ,.(D)—<D(D)I

De®D(m
3
3 vi
<4 log]n +20m+1) {Z%C (logln) +M, (logln) }
n? nt nz

<M, (log ln)3 _
n?
where the constant M; depends only on C, 7; and 7.
There are Borel subsets A of R* for which
LQA1D o84 )=der (e20)
for some positive constants d and «, a>>1. Examples of such sets are affine subspaces
of dimensions k'<k—1 (and their subsets and complements) and many other manifolds
of dimensions k'<k—1, for which a=k—%'. For any set A satisfying (11), we have
?(A)=0 or 1,
in particular, if A is an affine subspace of dimension %2'<k—1, then we have
d(A)=0.

THEOREM 2 : Under the same conditions as Theorem 1, there exist constants M, and
M, such that for sufficiently large # and a>>1 for any set A satisfying (11),

|Qa(A) —0(A)|

3
a 2 a
<M5(1°g ”) +d[c/re"z og n)? | py, o2 ™ } :

1 1
n? ne n?
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where the constant M, depends only on % and a.
The proof of Theorem 2 (which we omit) can be obtained in a similar way as
Theorem 1.
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