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The Theory of Riemann Integral

George TANAKA*

Aestract

If we develop the theory of Riemann integral as the same method of Lebesque inte-

gral, Riemann integral is not inferior to Lebesque integral. The theory of Riemann inte-
gral will be reported in this paper.

I The Theory of Riemann Integral

Definition 1. Logically Closed Subclass

Let X be nonempty set, and P be the power set of X, that is, P is defined
by P={A|ACX}.

Let O be the subclass of P, which has following properties :

(i) Xe0

(ii) If A, B€O, then ANBeO

(iii) If A=0, then A‘€0

We call O “a logically closed subclass of P on X” or “a logically closed class on
X"

From the properties (i) and (ii), it follows that ®€0, and it follows from (ii)
and (iii) that “if A, B€O, then AUBE0.”

O,
Fig. 1 OoS{Os}SO4=P
Os
...indicating @

* Prof. Dr. of Statistics
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Example 1
If X={1, 2, 3}, then -
p={o, {1}, {2}, {3}, {2, 38}, {3, 1}, {1, 2}, X}
P is the power set of X, but also a logically closed subclass on X, we write P
as O..
o={9, {1}, {2, 3}, X}
o.={o, {2}, {3, 1}, X}
0:={o, {3}, {1, 2}, X}
O1, Oz, Os are logically closed subclass of P on X,
O={?, X}
0o is also a logically closed subclass of P on X, These relations between Op, O,
0:, Os, O, are represented in Fig. 1.
Example 2
Let R be the set of all real numbers,
X=(0, 11={x|0<x<1}CR
0={9, X}

o-fo. (03} (3 1} %)

onleso 4} (4 3} (3 3 (3 010 B 6 33 )
x%—%:nm .\'fz—%v!—%——%ﬂl:h=l
e RIS = R
Ry
X7 4= IR I
O P 3 :h=0 .(—jilt—-} bh=g
Jaiy

t—:! —— h=3
=
P E(--’L_-J---L.j : A=0
03

Fig. 2 0o, 0,, Os. Concerning h, see Example 4, which represents the
length of intervals.
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O: has 2°=4 elements, O: has 2%=16 elements, ---, Ox has 22" elements. Qo O,
Q2 -+, Or and P are logically closed subclass of P on X,
Definition 2 Measure,

Let % be a function dlefined on a logically closed subclass O of P on X, and let

R*={x|x>0}CR, then % is denoted by O »R* U {0}.
If the function % satisfies the following conditions
(i) A(@®=0
(ii) If A, B€0O and ANB=9, then A(AUB)=k(A)+L(B)
then we call h “a measure on (X, 0).”

Theorem 1

If 2 is a measure on (X, O), then the measure % has following properties :
(1) If A, B0, then A(A)+h(B)=h(AUB)+h(ANB)

(2) It A, B0, then H(AUB)=SA(A)+R(B)

(3) 1fC, DEO, and CCD, then Z(C)=Sh(D)

Proof of (1)

O is closed logically and % is a measure.
R(AUB)+h(ANB)=h(AU(ANB))+Ah(ANB)
=h(A)+h(A°NB)+kh(ANB)
=h(A)+A((A°NBYU(ANE))
=h(A)+Ah(B)

(2) and (3)follow from (1). Q.E.D.
Example 3

lo|oa

In Example 1, let us consider (X, O.), if we denote the number of elements in

A as |Al, and define % as A(A)=|A|/3, then % is a measure on (X, O.), with the
property that A(X)=1,

Example 4

DR

<

In Example 2, if we define &1 as 71(9) =0, hx(O, %], 1 ln(%, 1:|=-.%-,

h(X)=1 then /u is a measure on (X, O:) representing the length of interval.
If we define A2 as

h2(D) =0, he(O, lz]= %.’v

#{(0. HJu(3 1))=n{o, B )tr(3 1)=% 0 k(=1

then /2 is a measure on (X, 0O:), Which represents the legnth of interval.
As the same way, We can define % such that % is a measure on X representing
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the length of intervals.
Definition 3 Partition.
If I is a sulclass of O, which satisfies the following conditions
(i) oe«lI
(ii) I is a finite cover of X : X=U{A|A=I} and [ is finite.
(iii) I is a diojoint class : if A, BE0O, then A=B or ANB=9,
then we call I “a partition of X” or “a partion of (X, 0).”
Example 5
We will consider (X, O in Example 1, then we can construct five partitions of
X as Fig. 3.
Example 6
In Examples 2, 4, if we define Iy, I, I, -+, In, J as
L={(, 1)}

=0 3 (3 1)

o B (b 3} G B G )
wefo 1) G 8) - (555 1)
o 3 G 8) (& 1)

then Iy, L\, I, ---, I., J are partitions of (X, On).
Definition 4. Upper and Lower Integral

f is a function defined on (X, O, %), which is denoted by X—f—>R, and f is a
bounded function.

This means that there exists m, M&ER such that m<f(x) SM for every x€X.

For any X, O, %, I and a bounded f, we define the integral as follows

©

AN
4“1@’Y*§%
nd

Fig. 3 Partitions of (X. O))
10={X}v Il={{l}! {2! 3}}2 Iﬁ={{2}' {3! 1}}v IS={{3}; {1. 2}}7 Ii={{1}n
{2}, {3}}

———undicating refinement (See definition 5)



George Tanaka  HEBCKFETFRUIEER (GF1585) 43

M{f, A, X)=sup f(A)=sup {f(®)|x€A} for each A=]
m(f, A, X)=inf f(A)=inf {f(x)|xA} for each A=t
S, I, XD)=3z{M(f, A, X) h(A)]AEI}
s(f, I, X)=3x{m(f, A, X) -+ h(A)|AEI}
where if 2(A), f(A) (A€I) have a unit of “cm”, S(f, I, X) and s(f, I, X)
have a unit of “(cm)%” and sum X are taken over all A€, which is finite.
S(f, X)=inf {S(f, I, X)|I is a partition of X}
s(f, X)=sup {s(f, I, X)|I is a partion of X}
where the infimum and spremum are taken over all partitions of (X, O).
We now define the upper and lower integral Jf, ff on (X, O) as
Tr=S(f, X)), S f=s(f, X)
We also write the upper and lower integral
;fdx=f fdx=J f

S fdx={ fdx=S f
X

Example 7
In the case of (X, O, %), in Examples 1, 3, 5, we will define XL»R as
FO=1, f2)=2 f@=3.
For partitions Jo, i, I, Is, I, in Example 5, S(f, I, X) and s(f, I, X) are
S(f, I, X)=3x1=3
s(f, L, X)=1x1=1

S(F, I, X)=1x%+3x

sCf, I, X)=1><%+2x

S(f, I, X)=2><%+3><

li
(X
|

Il Il
o [
wolto W

J—

s(f, I, X)=2><%—+1x

S(f, I, X)=3X%+2x

s(f, b, X)=3x5+1x

oo <"-"l||l\" o WY ol
—

I
[3%]

W @

W o
Il
[y
% o

wl= e

[

S, Iy X)=1xg+2x5+3

s(f, Iy, X)=1><—é—+2x—%’-+3x

Ff=S(f, X)=inf {S(f, L, XDli€{0, 1, 2, 3, 4}}=S(f, L X)=2
S f=sup {s(f, L, X)|ie{0, 1, 2, 3, 4}}=s(f, I, X)=2
In this case, the upper integral is equall to the lower integral, in such a case, f
is said to be Riemann integrable,

[
Q%]

=2

Definition 5 Refinement

Let I and J be partitions of (X, O), “for each B&J, if there exists A=I such
that BCA.”
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then J is called a refinement of L.
In Example 5, I—J shows that J is a refinement of I,
In Eyample 6, I, is refinements of lo, Ii; I is refinements of Io, I, I»; ---and
so on,
Theorem 2
Let f be a bounded function defined on (X, O, &) into R. I and J are partitions
of (X, 0), then the following propositions hold.
(1) s(f, I, XD<S(f, I, X) for every I
(2) If Jis a refinement of I, then
s(f, I, XDss(f, J, XD=S(f, J, XD=S(f, I, X)
(3) s(f, I, XDES(f, J, X) forany [, ]
(4) LSS
Proof
(1) m(f, A, X)=inf f(A)=inf {f(x)|x€A}
Ssup {f(x) |x€A}=sup f(A)=M(f, A, X) for every [
s(f, I, X0=3{m(f, A, X)- h(A)|AEl}
sZ{M(f, A X) - h(A)|AeI}=S(f, I, XD
(2) Jis a refinement of I, it follows that for each A1, there exists M/
such that A=U{B|Be=M}, where M is a disjoint finite sulclass of J.
M(f, B, X)=sup f(B)ssup f(A)=M(f, A, X) for every BeEM
It follows from definition 2 that
h(A)=3{h(B)|B=M} for each AT
Hence
S{M(f, B, X)h(B)|BeM}sM(f, A, X)h(A) for each AET
S{M(f, B, XDr(B)|BeJ}=z{M(f, A, XH)h(A)|AETl}
S T, XD=S(f, I, X)
s(f, I, X)=<s(f, J, X) will be proved in the same way.
s(f, J, XDS(f, J, X) follows from (1).
(3) If we construct XSO such that
(a) If Ael, BeJ, ANB=+=® then ANBEK then K becomes a partition of X and
a refinement of both I and J.
It follons from (1) and (2) that
s(f, I, XDsSs(f, K, XD=S(f, K, XDS(S, 1, XD
(4) s(f, I, X)=S(f, J, X) for any 1, J.
sup s(f, I, X0S8(f, J, XD

SL}p s(f, I, X)<inf S(f, J, X)
J
Sf<ff QE.D.
Definition 6 Integrable

If § f=s(f, X)=S(f, X)=F f, We say that f is “ Riemann integrable” or “Inte-
grable,” and write S f for their common value, we also write
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S for ffx)dx
X X

for the integral.
The following theorem concerning the existence of the integral will be obvious.
Theorem 3
A bounded function f of (X, O, A) into R is integrable if and only if, for any
nEN,, there exists a partition I such that
Sy I X)<s(f, I, X)+s

where N. indicates the set of all natural numbers.
Example 8

Let us consider Examples 2, 4, 6, where X=(0, 1) and for any nEN., logically
closed subclass On, and the measure /. representing the length of intervals are given.
N=2" then the partition 7. in Example 6, is written by

weflo 3 G 3 - (5% 1)

For any x€(0, 1J=X, we define f(x)=x% In this case, s(f, In, X), S(f, I, X)
in definition 4, are given by

S(f, In X)=T\}.T(12+22++N2)

1 N(N+D@N+1D)
g 6

Hehieh
s(f, In, X) =—N1—3—(1'-’+22+...+ (N=1)?)

1 (N-DN@N-1)
T N? 6

A
It follows that —13;-§s( i XDsS(f, X )é-:l,;, Hence f(x)=x* is Riemann integrable
on X=(0, 1J.
§f={ f={f(Ddz= 3

The next theorem 4 will be easily proved using the proposition (a) in the proof
of theorem 2.

Theorem 4
Let I, J, K are partitions of (X, 0O), If the notation I<J means that J is a refine
ment of I, then the binary relation < directs the class of all partitions, that is
(i) For any I, I<TI (reflexivity)
(ii) For any I, J, K, I<], J<K, then ISK (transitivity)
(iii) For any I, J there exists a pattition K such that <K, J<K (direction)
Theorem 5

If f is a bounded function of (X, O, %) into R, then
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(1) Sf=—f(=F)ie.—Sf=5(=F) (2) Tf=—f(-f)ie—Jf=f(—F)
Proof
(1) m(f, A, X)=inf f(A)=inf {f(x)|x€A}
=—sup {—fx)|x€A}=—M(—f, A, X) for any AE],
s(f, I, Xo=3{m(f, 4, X)-h(A)|Acl}
=Z{-M(—f, A X) - h(A)|Acl}
=—=3{M(—f, A, XDh(AD|Al}=-S(—f, I, X)
§f=sup s(f, I, X)=sup (=S(~/, I, X)=—inf S(-1, I, X)=—5(=1)

(2) follows from (1), because
Sf=i—(==-4(—f) QE.D.
If we use the equation (1), that f is Riemann integrable, can be expressed by
Sr==5(=0
not using the definitions of m, s, Jf.
Theorem 6
If, £ and g are bounded functions of (X, O, k) into R, then
SHLgSi(f+ST(f+D=Tf+T g
Proof of the right side of the expression
M(f+g, A, X)=sup {f{x)+g(x)|rsA}
ssup {f(x) [xEA}+sup {g(x) |x€A}
=M(f, A, X)+M(g, A, X) for each A=]
S(f+g, I, XD0=3{M(f+g, A X)h(A)|AcTl}
=s{MS, A XD+M(g, A, X))h(A) AT}
=Z{M(f, A, XDR(A)|AEI}+ T {M(g, A, X)h(A)|A<T}
=S(f, I, X)+S(@g, I, X)
ir}f S(f+g9, I, XD=(S(f, I, X)+S(g, I, X)

ir}f S(f+g, 1, X)§ir}f S, I, X)+i1}f S(g, 1, X)

. S+ STf+Tg
The left side of the expression follows from the right side, because
F(=N+ =) =F(—(F+a)ST(— N +T(—9)
—F(=N=T(==—T(—(F+g)
S f+fg=<S f+g by theorem 5. Q.E.D.
From theorem 7, it follows that if f and g are integrable, then f+g is integrable
and
S(f+p=5f+sg
because the left side of the expression is equall to the right side of the expression.
Theorem 7
If f is a bounded function of (X, O, %) into R, and «a=R then
(1) Sef=aff for a=0
(2) faf=aff for «20
(3) fSaf=aff for a<0
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(4) Sfaf=aff for a<0

Proof

(1) Maf, A, X)=sup {af(x)|x€A}
=a sup {f(x)|x€A}=a M(f, A, X) for each A€

From this equation, it follows that
Staf, I, X)=a S(f, I, X)
as the proof of theorem 6.

Taf=51}p S(af, I, X)=«a sin S(f, I, XD)=af f

(2) F—af=fa(=f)=af(—f) by (1)
J—af=—faf, f(—f)=—ff by theorem 5
—Saf=a(—ff)=—aff—faf=alf
(3) If=0then —faf=—aff by (1)
—faf=f—af by theorem 5
If az0 then f—af=(—a)J f
(4) follows from (2) in the same way as (3). Q.E.D.
From this theorem, it follows that if f is integrable, then «f is integrable and
faf=aff,
Theorem 8
If f and g are bounded functions of (X, O, k) into R, and f(x)=<g(x) for each
xeX, then
(1) Frsfyg (2) Srf=fg
Proof of (1)
M(f, A, X)=sup {f(x)|x€A}
<sup {g(x)|x€A}=M(g, A, X) for each A=]
S(f, I, X)=3{M(f, A, X)h(A)|AcI}
=3 {M(g, A, XOr(A)|A€I}=5(, I, X)
il}f S(S, 1, X)éil}f S, 1, X)

ff<fg QE.D.
Proof of (2)
—f(x)=—g(x) for each x, it follows
from (1) that
J(—)EF(—f), —Sg<—{f by theorem 5.
Jf=fg Q.E.D.
I f(x)=0 and 0=£¢g(x) for every x€X, then it follows that
0=S9=Sg
From theorem 8, it follows that if f and g are integrable, then
Jrssg.
Theorem 9
If £ is a bounded function of (X, O, k%) into R, then
(1) 157, 1LA1STIS
(2) It is not always true to hold |f FI<S|f]
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Proof of (1)
—|f@ X)) 21 f(®)] for every x€X
— S\ fI=T-1f1=S F<TIFI
The first equality is followed by theorem 5, and second and third inequality are
followed by theorem §
By theorem 2, we obtain
SIFISTIf ice. —TIFIS—SIf]
Hence —JF|fISTfSTIfeemeeeens (@)
From («), first inequality of (1) will be obtained.
Substituting -f for f in the expression (a), the second inequaly of (1) follows.
Proof of (2)
X=(0, 13,
if x€X is irrational, then f(x)=0,
if x&X is rational, then f(x)=-—1.
In this case (2) does not hold, because
Jf=-1, JIfI=0<|Lfl=1 Q.E.D.
The next theorem will be easily proved.
Theorem 10

If f is a bounded function of (X, O, %) into R, then there exists m, MR such
that

mSf(x)=EM for every x€X and the next inequalities hold
mh(X)<S FST FSMh(x)
Theorem 11

Let Y be a sulset of X in (X, O, %) and Y=O then

(1) &={ANY|A€0}, @:={ANY*|A€O} are logically closed subclasses on ¥ and
on Y° respectively.

(2) R(C)=h(C) for Cey
k:(D)=h(D) for DEQ:-
are measures on (Y, Qi) and (Y, @) respectively.
(3) 1If fis a bounded function of (X, O, %), into R, then f is a bounded function
on (Y, @, k) and also on (Y, @, k), and f has the following properties
(a) Sf=5r+if
X Y vy
(B) Sf=Srft+if
X T T

Proof
(1) A, Y0, AnNYeEQ:, O hence @O,

(i) Ye=0, YNnY=Ye,

(ii) C, DeqicO—C=ANY, D=BNY, A, B€O—CND=(ANB)NY<Q..

(iii) DeEQi—D=BNY, BEO—D*=B°‘NY (d represents the complement of

D with respect to Y), B°€O— DeQ:
(2) R(9)=0,
C, DeQ, CNnD=o

»ki(CUD)=h(CUD)=h(C)+h(D)=k(C)+k(D)
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(3) Proof of (a)
For a partition I of (X, 0), if there exists A€ such that ANY =0, ANY %0,
then we construct the refinement.J of I such that A€ J, ANYe], ANY‘e]J.
If we consider J type partitions then () follows.
Proofs which are not mentioned will be easy.
Theorem 12
Let Y be a subset of X in (X, O, %) and Y& O, then
(1) there exists Z€0 such that YCZ, but it is not always true that there exists
Zo=0 such that Zo,CZ, and YCZ,
(2) 1If there exists Zo of (1), then “if A0, ANY=® then ANZ°=®,” that is.
“if A0, ACY?, then ACZy*”
(3) @={ANY|AE0} is a logically closed subclass on ¥
(4) If there exists Zo of (1), and if we determine £ such that
R(ANY)=h(ANZ,)
then %, is a measure on (Y, @)
(5) If fis a bounded function of (X, O, %) into R, then f is a bounded function
on (Y, O, k) and f has following properties
() TrsTS (B Srsif
Y X X Y
Proof
(1) XeO0 satisfies YCX.

Let X=(0, 13, O={Ox|nE N} of Example 2, Y=[%, 1]6—:0, then Z=(a, 1JE0

for O§a<% and Y=ﬂ{(a, 1] I0§a<%}, but Y does not have a minimum Z.

(2) If we assume that there exists A0 such that YNA=0, Z,NA=+9,
then ANY—YCA*; YCZ, from (1) ;
YcZ,NnA€0;
From (1) ZoCZiNA° i.e. ZoN(ZoNA)=ZoN(ZeUVA)=Z,NA=0
which contradicts ZoNA+@
(3) A=s0—ANYCY .. Q<the power set of Y
(i) Xe0—XNY=YeQ
(ii) C, DEQ——there exists A, BEO such that C=ANY, D=BNY-—ANB<O,
CND=(ANB)NYEQ
(iii) DEQ——there exists BEO such that D=BNY—D? indicating the com-
plement of D with respect to Y, Di=B°NYeQ
(4) k(ANY) is determined uniquely by 2(ANZ,), ANZ,<O.
(1) k@)=h(®)=0
(ii) C, DeQ, CND=%——there exists A, BEO such that C=ANY,
D=BNnY, CND=(ANB)NY=9¢
ANBCY*— ANBCZF by (2)
E(C)=h(ANZy), k(D)=h(BNZy), R(CUD)=h((ANZ) U(BNZs)) =
R((AUB)NZ0))=h((ANZ) U (BNZo))=h(ANZ) +h(BNZo)=k(C) +E(D)




50 PBE(54.3) The Theory of Riemann Integral

(5) will be easily proved. Q.E.D.
Theorem 13
Let g be a function defined on (X, O, %) onto a set Y, i.e. ¢(X)=Y, and
if Q={D|DCY, ¢ '(D)E0} then
(1) Q is a logically closed sulclass on Y,
(2) if we define k& by
k(D)=h(g~'(D)) for each DEQ, then k is a measure on (Y, Q).

g
(3) if fis a bounded function of (Y, @, k) into R, and if X—Y and a function
g is one to one, then

(a) Tf=Tfog (8) Srf=Srfg
Y X Y X

Proof
(1) DcY .". QCthe power set Y
(i) Ycy, ¢g(Y)=Xe0 C. YeR
(ii) D, E€eQ—D, ECY and ¢7'(D), ¢ (E)EO—DNECY and
g (DYNg(E)=¢g"(DNE)YEO—DNEEQ
(iii) E€Q—DCY,' g (E)E0—ECY (E¢ is the complement of E with
respect to Y) and (¢ '(E))'=¢g"(E)e0—E‘EQ
(2) (i) k@)=h(g(D))=h(D)=0
(ii) D, EFEQ, DNE=9—D, ECY; go'(D), ¢ (E)E0, and DNE=0
k(D)=h(g7' (D)), k(E)=k(g"'(E)), k((DUE)=h(g"*(DUE))=h(g"*(D)Ug™
(E)), g7'(@)=g""(DNE)=g""(D)Ng ' (E)=0—k(DUE)=k(D)+k(E)
(3) 9:(X, O, Hh—(Y, @, k) ;f: (Y, Q k)—R and f is bounded.
k(D)=h(g~"(D)) for each DEQ.
If J is a partition of (Y, Q), then
I={g*(D)|D&J} is a partition of (X, O), because g~': Y—X, ¢! is a
function and one to one with the property that ¢ '(Y)=X, i.e. g and ¢! are
bijective functions. If ¢-'(D)=A then ¢g(A)=D,
M(f, D, Y)=sup {f(»)|yED}=sup {f(g(x))|xEg7(D)=A}=M(fog, A, X)
S, T, YD=3SM(f, D, Y)k(D)|DeJ}=3{M(fog, A, X)h(A)|AcI}
=S(fog, 1, X)
J f=inf S(f, J, Y)=inf S(fug, I, X)=Ffog Q.E.D.
Y J I Y

»

The next theorem will be proved as similar as theorem 13
Theorem 14

Let g be a function of X onto (Y, @, k), where Q is a logically closed class on
Y, %k is a measure on (Y, @) and ¢(X)=Y, then
(1) O={g"'(D)|DERQ} is a logically closed subclass on X.
(2) If we define & by
k(g™ (D)) =k(D)
then % is a measure on (X, O)
(3) if fis a bounded function of (¥, @, %) into R and if a function g is one to
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one then,
(a) Tf=Jfg (B) JLf=Srfog
Yy X ¥ Y

II Uniform Convergence

Definition 7 Converge Uniformly
Let N, be a set of all natural numbers, f», f be functions of X into R, i.e.

sr f
X—R, for each nEN,, X—R.

A sequence {fx} of functions is said to “ converge uniformly” to a function f if
and only if

there exists a function = : {5|5>0}_m"Na Such that for any >0, if m(e)<n then
(a) flx)—=<[falx)<f(x)+e ie.
(b)) falx) —e<f(x) < fulx)+e ie.

(c) | fo(x) —f(x)| <¢ for any x=X.
where the value of m(¢) does not depend on x.
Theorem 15

Let f» be a bounded function of X for each #&EN,, and a sequence {fu} converges
uniformly to a function f, then

(1) fis a bounded function of X.
(2) there exists a function /

Proof

i

{¢]e>0}— N such that

(a) S fa—F fl<e for every n>I(c)
(B) S fa—SfI<e for every n>I(e)

(1) If we put k=m(e)+1, then it holds by definition 7, (&) that

(b")

Jre(x)—e< f(x) < fre(x)+¢, for any 2€X

Because f: is a bounded function of X into R, it follows that

inf fo(X) < fe(x) Ssup fr(X) for any 2= X,

Substituting this relation to ("), we obtain

(2)

inf fo(X)—e<f(x)<sup fx(X)+e for any rEX,
(a) It follows by theorems 6, 8 that
S 1o=Sfa=f+ ) ST fa= )T f

ST fET(fa=)ETI =] (3)

If we exchang fu. for f.

Tf—fﬁué.—f(f_fn)§j|fn—fl (4)

(i) The case of £2(X)>0. Let [ be I(e)=m(s/h(X)), then for every n>I(c),
I fa—fl<e/h(X),
S fa=FI<T(/h(X))=¢
With (3) and (4), we have
|f fa—F fl<e for every n>I(c)
(ii) The case of A(X)=0.
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§ fa=0 for every x:X
Jf=0 .. (a) holds.

(B) Lhm=f{fa=S+D2(fu—=F)+LT
S(fa—f)=—=5(f—f») by theorem 5

S g FEFUS~—fSTIfa—Fl e (3" 3)
If we exchange f» for f
SF=SuSTfa=D)STIfa=Fl e 4" (4

Using (3'), (4") in places (3), (4), in proof (a) ; the proposition (£) will follow.
From this theorem, the next theorem will be easily proved.
Theorem 16
If f» is bounded and integrable for any n#&EN, and a sequence {fs:} converges
uniformly to a function f, then
(1) f is bounded and integrable
(2) there exists a function /:

!
{e]¢>0}——Na such that
|f fa—S f|<c for every n>I(e).

III Double Integral

Theorem 17
Let O be a logically closed class on X, and & be a measure on (X, O), in the
same way, @ be a logically closed class on ¥, and k be a measure on (Y, @), then
(1) if we define
0xQ={AxB|A€0, B&Q}
and O and @ have more than 4 elements respectively, then OXQ is not logically
closed class on X x Y,
(2) let O+Q be a sulclass of the power set of XX Y which has following
property (a)
(a) if OxQ is defined as (1) and KSOXxQ and K is a finite class, then
U{AXxB|AxBeK}e0+Q
when this condition holds, O*Q is a logically closed class on Xx Y.
Proof
Y (1) 0={0, A, A, X}, A+0+Ac
L}
i

Q={0, B, B, X}, B*®=xB°

then AxB, A*xB€0xQ
but (AXBYU(AXB)&0OxQ
(2) (i) X0, YeQ—XxYe0xQ
> XX YeE0+Q
(ii) when Z, We0+Q we will prove
----1 X ZNWeo+Q

A A (a) Z, W are composed by one element of
Fig. 4 Proof of (1) O x @ respectively.

BC
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Z=AxB, W=CxD; A, Ce0; B, De@
ZNW=(AxB) NI xD)=(ANC)x(BND)EO*Q
(b) Z is composed by two elements of OXQ and W is composed by one
element of OxQ, A, M ,Ce0; B, N, DeQ.
Z=(AxB)UMxN), W=CxD
ZNW=((AXxBYU(MxN))N(CxD)
=((AXB)NECXDNU((MXN)YNCxD))
=({(ANC)x (BND)HUMNC)x (NND))E0+Q
In the same way, we can prove the case in which Z is composed by n elements
of OxQ and W is composed by m elements of OX@Q.
(iti) Z€0 we will prove Z°€0.
Z composing one element of OxQ.
Z=AxB—Z‘=(A*xBYU(AX B)U(A* X B°).,
Z‘=0. we can prove when Z is composed by two element of OxQ,..,
composed by n-elements of O X @, in the same way.
Theorem 18

Let 2 and % be measures on (X, O) and (Y, Q) respectively, and OXxQ, O+Q be
defined as theorem 17, if we define g such that

for any AXBE0OXQ, g(AxB)=h(A) + k(B) then g is a function of OX@Q into
R*U{0}, the following propositions hold ‘
(1) for any ZE0+Q, Z is expressed as
Z=U{AXB|AxBeJC0xQ, ] is a finite disjoint class}
(2) when Z is expressed as (1)
Z=U{AxB|AxBe&J}, we define g as g(Z)=3X{g(AXB)|AxB&E]}

then ¢ is a measure on (X, 0+*Q).

Proof
(1) when Z consists of a element of OX @, it will be obvious, we will consider Z
consists of two ellment of Ox@Q,

Z=(AxB)U(CxD) if (AxB)N(CxD)=®, then (1) holds, if (AxB)N(CxD)
%® and the relation between AXB and Cx D is given as Fig 5, then Z is expres-

Y r '

T : —t
/) ! i

L | _ | ,

B vymTTyTTT r ! | AXB
'|Il 1 1 | I
l‘\', 1 ' | - __

R e | —
\: : I : ]
S - e
] : [} ' i ==

1 )
L“-'L::---"*i;z"-’:::"-- X (ANC)X(BND)
-_‘_4_.. s

(ASNC)XD

Fig. 5 Proof of (1) Fig. 6 Z
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sed as Fig 6
Z=(AxB)uA°NCYxDHU((ANC) X (B°ND))
Z consists of the disjoint set.
The other case will be disposed samely.
(2) Ze0o+Q
when Z is disjointed in two ways such that
Z=U{AxB|AxBelI}, Z=U{AxB|AxBe&]}
but it holds that
2 {9(AxB)|AxBEI}= 3 {9(AXB)|Ax BE]}=¢(Z)
hence g is a function of O*@ into R*U{0},
It will be proved for any case that
g(®)=0.
Z, We0; ZNW=90 then g(ZUW)=g(Z)+g(W) Q.E.D.
Theorem 19
Let f be a bounded function of XxXY into R provided that (X, O, &) and
(Y,Q, k) are given respectively. Let us denote fy(x)=f(x, y), then if y is fixed, fy

is a function of X into R, i.e. XLR. For (X, O, k) and (Y, @, k), we have
(XxY, 0¢Q, g) as theorem 18,
it follows that
(1) JGM=T F
Y X XxY
Proof

fv
If y is fixed, fy is a function, X— R,
Let I and J be partitions of (X, 0), (Y, @) respectively.

Partiion K
Y -
I
1
'
]
L
t
1
]
'
]
:.
________________ ¥
Partition I X./
Y

Fig. 7 Proof of (1) Fig. 8 Proof of (3)
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M(Sfy, A, X)=sup fr(A)Ssup f(AxXB)=M(f, AxB, XxY) for each AEI,
Be],
X :

SIS {M(f, AxB, XxY)h(A)|AcI} for each BE].
]\T’fy is a function such that ff,: Y—R.
MGfn B, Y)=sup (1 fIySBYSS{M(f, AxB, XxY)(AD AT}
’ for each B€J
(2) J:’fy)SS(J Io T, Y)—"{M(J Iy B, YD)E(B)|BET}

ST T{M(Sf, AxB, Xx h(AYR(B)|Asl, B&]J}
=3{M(f, AxB, XxY)g(AxB)|A€I, Be]J}
If K is a partition of (XxY, O+Q), and the next equalities (3) hold
(S)Xfyf=i2_f S{M(f, Z, XxY)g9(Z)ZEK}

J(
Y

=inf T{M(f, AxB, XxY)g(AxB)|AcI, B€]J}
1]

then we have (1) from (2).
Proof of (3)
If Tis a partion of (X, O), [ is a partition of (¥, @), then
IxJ={AxB|A€l, B&]} is a partition of (XxY, 0+Q)
i}l{f S{M(f, Z, XxY)g(Z)|ZeK}

<inf S{M(f, AxB, XxY)g(AxB)|Acl, B=]J}
Ly

For any partition K of (XxY, 0«Q), we can construct a partition Ix J of
(XxY, 0+Q) which is a refininement of X, as Fig 8.
inf 2{M(f, AxB, XxY)g(AxB)|A€l, Be]}
Ly

=inf X {M(f, AXB, XxY)g(AxB)|AXxBeIx J}
IxJ

Sinf S{M(f, Z, XxY)9(2)|ZeK}
K

Hence, (3) follows. Q. E. D.
The next theorem will be proved as similar as theorem 19.
Theorem 20
Let f be a bounded function of Xx Y into R, provided that (X, O, k) and (Y, Q,

fv
k) are given respectively. Let us denote fy(x)=f(x, y) for a fixed y, then X— R,
For (X, O, &), (Y, @, k), we have (XxY, 0+Q, g) as theorern 18, it follows
that

)

fs
f)}éf;({f)é IS

<ol N
PO )

I 25U {
XY TX

Example 9
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Let f be a function XX Y into R, where X=Y
=(0, 1) and
(x, y)EXxY, if x and y are both rational,
then f(x, y)=1
If x or y are irrational, then f(x, y)=0.
In this case

T r=1, J =0
XxY XXY

If y is rational
fy(x)=1 for rational x.
fy(x)=0 for irrational x.

Tfy=1. _-ffy=0
X X

If y is irrational

1 ____;/";___ fy(x)=0 for any x.

Tf.‘I:O) -f fJ’:O
X X

JGr=1, sGN=0

Y X Y X

0 " JT =0, T fN=0
Y x YX
y is rational Definition 8 Upper and Lower Integral on D.
Let D be a subset of XXY, if we define d such

that
b=, NEXXxY—d(p)=1 for pED
PEXXY—d(p)=0 for p&D
then d is a function of Xx Y into {0, 1},

d
y is irrational XxY—{0, 1},

] Let f be a bounded function of XXY into R,
Fig. 9 f, fy then

PEXXY——d - f(P)=d(PF(PYER
d + f is a bounded function of XX Y into R,
We define the upper and lower integral on D, respectively by

Tf=7d-f, ff=fd-f
D XxY D XxY

From the proof of theorem 20, it is sufficient that we will consider only a partition
Ix J instead of K which is a partition of XX Y.
Theorem 21

Let D be a sulset of (Xx Y, O«Q, g¢), if we determined a function d as same as
definition 8, then the following equalities hold,

(1) fd=Iir}f >{g(C)|ICND*0, CeIx ]}

(2) fd=sup {g(C)|CcD, CEIxJ}
Ix]

Proof
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Md, O)=1 for CND+®, CeIx]
M, C)=0 for CND=9, CEIx]
S, Ix)=Zz{M{d, C)g(C)|CEIXT}
=3{1-9OICNT*P}+ {0+ g(C)|CNT=0}=3g(C)|CN T+d}

fd=iln§ S, Ix])=}n§ S{g @ ICNT*d, CeIx]}

In the same way, it follows that equality (2) holds.
m(d, C)=1 for CC T that is CN Tc=9D,
m(d, C)=0 for CN T+,
s(d, Ix])=3x{m(d, C)gC)|CEIx ]}
=3{1-9O)|CNT=0}+ £{0-g(CO)|ICNTFP}=3 {g(C)|CN T*=0d}

. fd=sup sd, IxD)=sup{gO)|ICNT*=P, Ce€Ix]J} Q.E.D.
1] IxJ

Definition 9 measurable
The set D is called a measurable set if and only if fd=Fd
Example 10
Let X=Y=(0, 1),
J(p)=3 for any peXXY,

n)
D={(x, y|%<x§:, —:15-<y§%, x and y are both rationals}

In this case
M@ - f, C)=3¢(C) for CND=*d
Mdf, C)=0 for CND=9
m(df, C)=0 for any CelIxJ
Sdf, IxDN=32{39(C)|ICND=*0, ccIxJ}=3%{g(c)|CND*d}

77= T af=inf 35{g(0)|CND#0}=3x Fx =7

D XxY 3
L Tr=%. If= § df=0
D D X<y
Theorem 22

If £ and fi and f: are bounded functions of (XxY¥, 0+Q, ¢) into R, and
DCXxY, then
(1) (i) fr==7(=1 (i) Jf=—5(-5
D D D D

(2) g_frl-gfzé.[(fri'fz) §T(fl+f2)§ffl+gfz

D D D
(3) (i) Taf=a5f for A=0
D D 2
(ii) fAf=4Sf for A=0 3
D b5 :
(i) Spf=uif for #<0 -é— . 4
(iv) lj)'#f=#il;f for #<0 P ' ! |
(4) NH(P)=f(p) for any peX XY then % % X

(i) TAST S, (i) SASSf
D D D D
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Proof of (1)
m(df, C)=inf {d(L)S(P)|pECY=—sup {—d(P)f(P)|pEC}=—-M(—df, C)
s@df, Ix=3x{mWdf, OgC)|CeIxJ}=T{—M(—df, C)g(C)|CEIX ]}
=—-3{M(-df, C)gO)|CeIXT}t=~S(—df, IxX])

Sf= S d- f=sup s(df, Ix])=sup (—s(—=df, Ix])
D XY IxJ IxJ

—inf S(=df, Ix])=—F (=df)=—=F d(—=f)=—J(-1) (i)
157 xxy XY D

(ii) is follows from (i), because
(i) T-Hh=—S1, f=—fi ii=—f

D )

Fr=f—f (i)

DD

Proof of the right side of the expression (2)

Md(fi+f2), C)=sup {d(p)(/r(p)+f2($))]|p=C}
=sup {d(p)fi(p)+d(p)f2(p)| pEC}
Zsup {d(P)fi(p) | pECH+sup {d(p)f2(p) | pEC}
=M(df, C)+M(df:, C) for each CEIX]
S@fit S, IXDN=Z{Md- (fi+f)C)g(C)|CETI* ]}
< > {(M(df,, CO)+Mdf., C)g(C)|CEIX T}
=3 {Mdf, O)gO)|ICEIXT}+ Z{M@@fL)g(C)|CeIx T}
inf SN+, Ix])ESWSf, Ix])+SAf:, IX]T)

IxJ
ilng S(d(Sfi+ S, IXf)éi!ng S(dh, Ix])+S@f, IxX])
inf SE(Ni+12), IxT)Sinf Sdfy, IxJ)+inf Sdf, Ix])
Ix] IxJ IxJ
S T dAES T dAt T df
XxY AxY XxY
SN R)EF AT S
D D D
The left side of the expression follows from the right side, because
JTU=D+ (=) =F(— A+ D ST(—= L)+ (—Ff2)
D D D D
St —LHh—S S using (1)
D D D
o JATZL AL
D D D

Proof of (3)
(i) MQ@df, C)=sup {2d(p)f(p)|pEC=2 sup {d(p)f(P)| pEC}=2 M(df, C)
From this equation, it follows that
S(df, Ix])=a8@df, IxJ)

¥ 2df=sup SQ@df, IxJ)=2sup SWf, IxJ)=2 T df
XxY Ixf Ix] XxY
o TAf=ATf
D D
(i) S=2f=F2(—f)=25—f by (i)
D D D
T=2f==J2f, J(~f)=—ff by (1)
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—JAf==2f f—fAf=2Sf
(iii) 220 then —;zf=—x{;f by (i)

~F2f=f~2f by (1)
D LD
S=f==2Ff
D D
(iv) If220 then —fif=—=24f by (ii)
D D

—JAf=f—Af by (1)
D D

coI-Af=-asf
D D
Proof of (4), (i)
M@f,, C)=sup {d(p)f1(p)|pEC}<sup {d(p)f2(p)|pEC=M{dSf>, C)
for each c&Ix ]
S@df, IxND=z{M@f, C)g(O)|ICEIXJ}= T {Mdf:, C)g(C)ICEIX]T}
=S(dfz IxX])
inf S(dfy, IxJ])<Zinf SWf:, IX]J)
IxJ Ix]

. TAST S
D D

(ii) —AP)Z—f2(p) for each p=Xx Y, it follows from (i) that
J(=)EJ(=f), —L2S—=5fi by (1)
D D D D

SO INhsSSf, QED.
D D
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