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Abstract

A ncnlinear model (NBL model), based on a linearized model of the given nonlinear
system, has been presented with an application to quantized control problems. In this
model a system nonlinearity is regarded as a kind of disturbance to the linearized model.
A high-speed and simple procedure for computing transient responses of the NBL model
can be derived by use of the above thinking and the trapezoidal rule. From this treat-
ment and disposition, a high-speed computational algorithm for determining quantized
controls can be constructed by the steepest descent method. Finally, some examples were
computed by the presented algorithm,

1. Introduction

For obtaining optimal controls a linearized mathematical model is usually adopted at
first even if the actual system is described by the nonlinear differential equation. State
variables of the linearized model, however, behave frequently beyond linearization as-
sumptions under the optimizing computation. In this case the computed results are
unreliable, so that the linearized model must be modified by recovering nonlinearities
of the system and its optimal controls also must be computed all over again from the
first.

Several approximation methods have been reported for determining suboptimal con-
trol laws for nonlinear systems; e.g., the method of instantaneous linearization [1],
the perturbation method [2], and methods of parameter optimization [3]-[5]. In addi-
tion, for solving the quantized control problems Havira ef al. presented a computa-
tional method by use of a piecewise differential dynamic programming algorithm [6].
However, these methods are not always suitable for the above approach and are poor
in high-order system problems. For solving this trouble a nonlinear model based on the
linearized model (abbreviated NBL model) has been presented with an application to
the optimal control problem [7].

In this paper a quantized control problem is formulated under the NBL model to
construct an optimizing algorithm based on the steepest descent method. Here a one-
dimensional minimization technique is also considered to improve the numerical con-
vergence of the quantized control computation, Finally, some quantized controls are
computed by the presented algorithm.

2, Mathematical description of nonlinear systems

The system with nonlinear elements (e. g., softening function, hardening function,
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saturation, deadzone, backlash, hysteresis, and relay) is described by the nonlinear
differential equation
X&) =F(X, t)+Bu(t) (1)
where X(¢) is the n-dimensional state vector, #(#) is the m-dimensional control vector,
f(X,t) is an n-dimensional nonlinear function, and B is the z#Xm control matrix.
The linearization by the Taylor-series expansion of (1) around an operating point
Xo(®) yields
i@ =Ax(t)+Bu(t) (2)
where x(f) is the n-dimensional state vector newly-defined, and A is the zx#» system
matrix. This linearized model (2) is used as the basic model for the NBL model.
Consider now a construction of the NBL model in mathematical description. Each
of output signals 7/(x,#) (j=1,---,I) from nonlinear elements in (1) is determined by
the magnitude and past history of each input signal 2/(x,#). Around X,o(f) the input-
output relation of the jth nonlinear element is written by
(%, 8) =Gz (x,t) (3)
where the jth nonlinear gain G»’ is normalized as a whole in order to approach to the
linear gain 1. Such a nonlinear gain G+’ can be divided into the linear gain 1 and a
deviated nonlinear gain Ga’ as follows :
G/=1+GJ (4)
Substitution of (4) into (3) gives
' rix, =2 (x, ) +G’zi (x, 1) (5)
If the deviated term Ga’2/(x,#) in (5), the nonlinearity, is regarded as a kind of dis-
turbance to the linearized model (2), then the nonlinearity can be recovered as in Fig. 1
by adding the equivalent signal w.’(¢), which is equal to Ga’z/(x, £), to the point where
the jth nonlinear element was located.
By applying this idea to all of nonlinear elements in (1) the following nonlinear
model based on (2) can be constructed :

@) =Ax() +Bu(t) + Beue(t) (6)
where Be is an nx/ coefficient matrix
which identifies the location of nonlinear
elements and #.(¢) is an /-dimensional

79 (x,t) - (x,t) vector.. Smcc.e 7(%,¢) and z(x,2), w?nch
Gn'j are /-dimensional vectors, are obtained
by the input-output information of non-
linear elements, #.(¢) is computed by
@ we()=r(x,t)—z(x,t) (7)
with
uej(t) . z(x,t)=Ce:c(t). (8) .
where C: is an I/x#n coefficient matrix.
23 (x,t) + 4t I (x,t)_ The above model (§) with (1) and (3 is

the proposing NBL model.

Fig. 1 Recovery of the nonlinearity
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3. Transient response computation of the nonlinear
system described by the NBL model

3.1 Computational procedure

Transient responses of the NBL model (6) can be computed directly by an explicit
numerical method for solving the ordinary differential equation (e. g., the Runge-Kutta
method). The stepwidth = for the transient response computation by the usual explicit
method is determined by considering the system highest frequency component, but a
failure in its determination leads a qualitatively different solution from the theoretical
one. The behaviores of the numerical solution (or the transient responses) are usually
diverged (such a numerical trouble is called the numerical instability). In this case
the stepwidth © must be determined nallower than the necessary one to avoid the
numerical instability. This disposition, however, increases the computational amount.
For solving this numerical trouble the following method is considered.

Let x: be the n-dimensional solution vector of (6) at the time point k7, Assume
that #(#) and #.(¢) are held to the constant values %+ and #e, respectively, during
the time interval [kr, (k+1)7]. This assumption is frequently used to transform the
differential equation into the difference equation. Integration of (6) by the trapezoidal

rule
J‘,(:‘H-l)r i’(t)dt
=_[i” “”{A (xk+1—xk)%+Axk+Buk+Beuek}dt (9)
gives
Xio1=Pxe+Quer+Qettes 10)
where
P=I+Ar(I-0.5A7)! anwn
Q=t(I—-0.5A7)"'B (12)
e=7(I—0,5Ar)"'B. a3
Furthermore, (7) and (8) become
Uek=Vt— 2k (14
zr=Cexs (15)

at the time point k7, then u.: is obtained by the above relations (14) and (15).

Therefore, a computational procedure for the NBL model is provided as follows :

0) compute P,Q, and Q.

1) zz=Cexz

2) Ua=rr—2z

3) Xea=Prrt+QurtQotter

4) 1let k+1 be % and return to 1).

The matrix function (11) is one of the Padé expansions of e4* and (10) is the ap-
proximate discretization of (6) by use of the approximate shift operator (1+40.5s7)/
(1—0.5st) which is the Padé 1/1 type expansion of e*. On the transient response
computation of (2) this discretization always guarantees the numerical stability [8].
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Therefore, it is expected that ¢ can be determined wider than any one of the usual
explicit methods (i.e., the high-speed transient response computation can be expected).

3.2 Numerical stability
Assume that all characteristic roots a’(j=1, ---, #) of (2) are located in the left half
of the complex plane (abbreviated LHP). Consider the jth characteristic root deviated
into a’+¢ (located in the LHP) from &’ by the influence of system nonlinearities.
Then the NBL model is written by

() =alx () +aiu (E) (16)
with
. J .
ueti(t) =—; 2 (t) (17)
By use of the Padé 1/1 type expansion, (16) is transformed into
1+0, 5a’c a’t ;
X Jk+l—‘ 1—7-0 aa,_ k+ 1 0 Sa)_ *"k (18)
with
i, & i
Ue=—7x"% 19

Substitution of (19) into (18) yields

xMpo=Plhx*sy (20)
where
;,_ 1+0.5a’t+¢/r o
Pr="T 054 &2y
Let

Gr=—aitif, dr=—ditiol (i= y=T) (22)
and substitution of (22) into (21) gives

i 140.5(=a/4ig) + (—o/ tiw)
Pl= 1=0.5(—ai i) 23

In order to guarantee the stable computation of (20), the following condition must be
satisfied

| Pir] <1.0 ©L))
Then the jth numerical stable region for
AiYJ (20) is obtained as follows :
unstable {Wi—(—1-0.5a/) )24 (¥ —0.5 3
<(—1-0.5a%)2+(0.5 )? (25)

where W/=—(a’+d’) and Y/=p5'+«/, which
is shown in Fig. 2

Then the stable computation of (20) can be
guaranteed while ¢z travels in the circle as

in Fig. 2. Therefore, the numerical stability
for the computation of (6) is clearly guaran-

teed while each of ¢z (j=1, -+, n) travels in
Fig. 2 Numerical stable region each circle, respectively.
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4, Application to quantized control problems

The nonlinear system described by the NBL model
x(B)=Ax()+Bu(t)+ Beu.(t) (6)
with
x(to) =%0 (26)
is considered. The problem is to choose the m-dimensional quantized control vector # ()
to minimize
J=% [ N O Fa@ +4 @ Ru)}at @)

where F is the nX#n positive semi-definite weighting matrix, R is the mXm positive
definite weighting matrix, Zo and {s are fixed, and x(¢s) is free. Quantized levels of
u(t); 0, *q, *gq» -+, *qu), are determined to minimize (27) and each of deter-
mined levels is held to the constant value during each time interval [kr, (B+1)7.].
Here <, is the stepwidth for the quantized control computation.

This quantized control problem can be solved by the steepest descent method which
is one of the gradient methods [9], [10]. The Hamiltonian H(#) can be defined as

H() =[Ax(®) + Bu() + Bate(D (D) + 5 LT O Fx(D +aT(ORu(®}  (28)

where
. T
0 =—[A+Bea—ff%ce] S —Fx(t) (29)
with
d(tr) =0 (30)
Then the gradient g(¢) is
o(t) = SR~ B9+ Ru(t) 3D

When the Lth approximate quantized control #.(¢) is given, the Lth gradient gr(¢)
is obtained by solving (6) forward with (26) under #(¢) =2.(2), solving (29) backward
with (30) and then computing g:(#) from (31). Here (6) is solved by use of the pro-
cedure presented in section 3 and #(¢) is not interpolated because of its quantized form.
For solving (29) the following formula is also presented :

e =Drdr+ En(xe+x8.1) /2 32)
with
do=0 33
where
Diy=T+[M(kz)JTo(I—0.5[M (k)] o) ! 3H
Ev=1(I—0, 3[Mk=)]Ts) -1 F (35)
Mk =.4+Be7g%2g”7)r)ce (36)

and (xk+xk.1)/2 is the result of the linear interpolation of x(#) during the time in-
terval [ks, (k41)7], which improves the numerical accuracy.

Therefore, the algorithm for computing quantized controls is designed as follows :
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0) set uo(¢)=0

1) compute gr(?)

2) modify gr(t) to [gr(¢)Imes as in Fig. 3

3) set st(t)=—"[gr(®)Imoa

4) choose v(>0) to minimize J{[ur(#)+vsL(¢)]quan} where the value of J is
computed by Simpson’s rule and the notation [ * Jeuen means the numerical
quantization processing of [*] by use of the quantizer as in Fig. 4

5) set wra(8)=[uc(@®)+orsc(€)]ouan

qM ........... p—
LS
gL(t) S S :
(») 9 : 5 [ * lquan
/ ——— &1 G
0 — f— Z*q 2
to \ tr - L%
Fig. 3 A modification for g.{f) Fig. 4 Quantizer ; (0, +q, +¢s, ..., +q2)

Calculate sp(t) = q; «s(t)/e
where q is the minimm level width
of Quantizer and 4 = m}x]sd(c)l

3

vy = 0.0,

Jy = 3{lute) + vy %80 (8) Jquan}
i

[a=%, dn=d), w=2.0, Kk=0 |

J

1}

W= 0.1%(vo - vy)

v3 = va, J3 = Jp
w0500
va=wvy+w, Jo

vy = vy, 0y = Ja,

va = vy, J2 @ 33, VL = V2
E

w=V3-V1,
vz = v3, J3 = J3

< 0
Vi, = V2 VL = V3 vy, 2 Vm
'REIURN) RETURN RETURN

Fig. 5 A procedure of one-dimensional minimization
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6) let L+1 be L and return to 1).
The computation of vz in 4) is important from the point of the numerical convergence
(or computational amount). By the simple quadratic [cubic] interpolation method for
one-dimensional minimization [9], [10], good results could not always be obtained for
the quantized control problems, Here vr is determined by a procedure as in Fig. 5
which is designed to have a good numerical convergence.

5. Computed examples

The following quantized control problem was considered. Given the controlled sys-
tem as in Fig.6 with nonlinear elements as in Fig. 7. Minimize

T=TetJo= [ {7 ®2(0) +0. 50 }at

Here x(0)=[0.0 0.0 0.0 1.0]1%.

The quantized control %(¢) is generated by the following quantizers :
Quantizer 1; (0, £0.2, +£0.4)
Quantizer 2; (0, 0.1, +0.2, +0.3, +£0.4)

and then x(8) is free.

Quantized controls of some cases were determined by the presented algorithm.
Numerical results are summarized in Table 1. In this example the value of J was al-
most halved after a few iterations of each case. Typical trajectories (transient re-
sponses) of Cases 1 and 4 are plotted in Figs. 8 and 9, respectively. Furthermore, u(#)
for the linearized model of the given system was determined under the same condi-
tions as Case 4 (Quantizer 2, 7,=1.0, =0, 25). The optimizing computation was stopped
after 6 iterations. Transient responses, obtained by adding #(#) to the NBL model,
are also plotted in Fig. 10. In comparison of Fig. 9 with Fig. 10 it is clear that each
of their differences for x1(¢), x:(¢), and J: is little, respectively, but each effect of

u(t) 5 X3 0.2 X5 + 1 %3 . 14Xy
Ny jn . No |—s 3 — N 3 = .
1+s/0.1 2™ Tes/50 2 s 3 s

Fig. 6 Controlled system with nonlinear elements (Ny~N;)

5 0.7 ] 0.3 - 0.9
0.2 f ] 9.05\»/:({ °'°4|’ﬂ4
/l 0.2 /Io.cs /|0.04

Ny No N3

Fig. 7 Characteristics of nonlinear elements (Ni~N3)
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Table 1 Numerical results

Case 1 2 3 4 5 6
Quantizer 1 1 2 2 2 2
Tq 1.0 0.2 1.0 1.0 1.0 0.5
T 0.25 0.1 0.5 0.25 0. 025 0.25
Number of iterations 4 5 3 3 3 4
Number of J computations 25 33 21 20 21 28
J=Jz+Tu 3.849 3.811 3.796 3. 800 3. 805 3. 770
Ju 0. 100 0.128 0. 110 0.110 0.110 0,135
Computation time in seconds

u(¢) is greatly different.

Computed transient responses of x(#) under the condition 7=0.25 (Case 4) agree
well with the results in 7=0.025 (Case 5). Even z=0.5 (Case 3), the computation
was stably under the presented procedure of the NBL model. However, the computation
by the 4 th-order Runge-Kutta method is fallen into the numerical instability under
the stepwidth condition 7=0,25., In this case ¢ must be theoretically determined
nallower than 0.056 to guarantee the numerical stability, so that the Runge-Kutta

1.0
J, = 3.690
I x(t) g, =0.110
0.5}
+ ' + 4 + + + 0.0 : + : 4 I .I + —
T d
r ¥ (t) : T %y (£)
-0.5} ult) -0.5} u®
Fig. 8 Trajectories of Case 1 Fig. 9 Trajectories of Case 4
1.0
Jy = 3.671
s Jy = 0.200
0.5} "
I ' [ 1 -
0.0 + + + + ' } +
[ ‘ — 4 8 t
L xl (t)
-0.5p u(t)

Fig. 10 Corresponding trajectories of Case 4 by the
quantized control for the linearized model
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method spoiles the high-speed optimizing computation.

6. Conclusion

This paper provided the NBL model, which describes the nonlinear system in the
usual linear matrix notation, and derived its transient response computational method
with a numerical stability discussion. In addition, an algorithm for computing quantized
controls was presented under the concise formulation by use of the NBL model, which
can also compute high-order system problems. Its computer program routines are con-
structed simply by adding the option routines to the linear model optimization codes
(computer software systems). Some examples were actually computed by the presented
algorithm and the optimization algorithm was effective judging from these computed
results.
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