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Applying Non-standard Analysis to Topology
George TANAKA®

Abstruct

Abraham Robinson, an eminent English mathematician, published his treatise on “Non-sandard
analysis” in 1961 and 1966. This treatise startled the world with the novel theory, and this great
achievement will be said one of the greatest mathematical exploits of this century. This noted
mathematician has revived the theory of monad of Leibniz as far back as three hundred years.
(monad means infinitesimal) And for this reason, the theory of “Non-standard analysis” is now
called together with “Infinitesimal analysis”.

If we apply non-standard analysis to the usual topology, the general topology and Japanese
topology, the main theorems of topology are casily derived and proved as this paper.

1. Usual Topology

Definition 1

Let us consider the universe X={qa, b, ¢, d} with the order: a<b6<c<d in Fig. 1.

A subset A of X is not connected iff there are x, yEA, p& A such that z<p<y.

From this definition, the five sets in Fig. 1 are not connected, and the eleven sets
in Fig. 1 are connected. '

Definition 2

Let R be the set of all real numbers. It is considered that every point of R has
infinitesimal length as Fig. 2.

Let z, v, z be points of R, and 2<y. The closed interval [z, y)={z|z<z<y}
and the open interval (z, y)={z|x<2z<y} are represented as Fig. 2.

The subset A of R in Fig. 2 is not connected iff there are points z, y€A, p&A
such that z<p<y. From this definition, it is obvious that the closed interval (x, y) and
the open interval (z, y) are connected, and the next theorem is immediate.

Theorem 1
The empty set ¢, and every singleton {z}, and the set of all real numbers R, a
closed interval, a open interval are connected. (Fig. 2 and Fig. 3)
Theorem 2
Pp*¥ASR. If A is connected and p& A, then one of the following statements holds.
(a) The set A lies on the right side of p: p<x for any z€ A.
(b) The set A lies on the left side of p: x<p for any 2€A. (see Fig. 4)
Proof

If there are two points 2, y€A as Fig. 2, (4), then the set A is not connected,

which leads to contradiction.

* Prof. Dr. of Statistics
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Theorem 3

If the set A is connected in R, which contains at least two points, then A is one of
the following set.

(1) The set of all real numbers: R.
(2) Closed rays: (a, ®)={zlaZz}, (—, a)={z|x=Za}, aeR.
(3) Open rayes: (a, ®)={zla<z}, (—, a)={z|z<a}, aER.
(4) Closed intervals: (a, bl={z|laZ2=b}, a, bER and a<b.
(5) Open intervals: (a, b)={zla<ax<b}, a, bER and a<bd.
(6) Half closed (or half open) intervals: (a, b)={z|aL2<b}, (a, b)={z|la<z=b},
a, bER, a<b.
Proof
Question 1 Is there p&E A ?
Question 2 Is the set A bounded?
Question 3 Is there minimum in the set A?
Question 4 Is there maximum in the set A ?
If the answer of Question 1 is “no”, then €A for any zER, it follows A=R,
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(See Fig. 5.(1).)
The answer of Question 1 is “yes”, from theorem 2, the statement (a) or () holds,
we will assume that (@) of theorem 2 is true hereafter.
The answere of Questions.

Q1 Q2 Q3 Q4 Conclusion “A is
yes and (@) no yes no (2) in Fig. 5
" no no no €))] "
" yes yes yes 4) "
" yes no no 6)] "
" yes yes no 6 7"
yes and (a)  yes no yes (6’) in Fig. 5”

Definition 3

We call a union of open intervals (z, p) U(p, y) with 2<p<y “a open interval de-

leting p”. This is denoted by (z, p, ¥), that is.
(z, py ¥)=(z, U, 1), z<p<y

A open interval deleting p, (z, p, ¥) is represented in Fig. 6.

Let A be a subset of R, a point pER is called a cluster point of A iff every open
interval deleting p has at least one point of A. (See Fig. 6)

The set of all cluster points of A is called “the derived set of A” and denoted by
Al

A point p is called “an isolated point of A” iff (i) p€A and (i) p is not a cluster
point of A, iff (i) and (i) there is an open interval deleting #» such that (z, p, ¥) N
A=¢. (See Fig. 7)
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If every point of A is isolated, A is called “an isolated set”.
Theorem 4
If a, b€ R and a<b; A, BER then
(1) (a, b)'=la, b) (2) (a b)Y =la, b) (3) ¢'=¢
(4) f{a}'=¢ (5) R'=R (6) If ASB then A’SH’
(7)) (AUBY=A'UB" (8) (AnNBYESA'nB (9) AYE&A
Proof
(1), (4) See Fig. 7. (3), (6) will be easily proved.
(2) For any z<a, z is not a cluster point of (a, ). For any z, there is y such
that z<<y<a and 2 such that z<az.
(z, z, y)Nla, bI=¢
Hense, « is not a cluster point of Ca, &). (See Fig. 8)
(6) if (x, p, YNA+¢; ASBie A=ANB
& (z,p, WNANBx¢ = (a, p, Y NBx¢
that is if p is a cluster point of A, then p is a cluster point of B. (See Fig. 8)
(7) A,BSAUB using (6), we obtain A’, BS(AUB)’
o A'UB'S(AUB)
Next we must prove that (AUB)Y' SA'UPB,
The contrapositive is that there is » such that p€ (AUB)’, p&A’UB’; then p& A/,
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p&B’. There is z<p<y and z’<p<y’ such that x<z’, y<v',
(z, P y)nA=¢ (x”P: y')ﬂB=¢ (See Fig. )}
then (2, p, y)NA=¢ (z,p,y)NB=¢
(', p, IN(AUB) =¢
which contradicts that p€ (AU B)’
(8) From (6) ANBEA, B=(ANB)' SA’, B=(ANB)' SA’'NB (See Fig. 10,11)
(9) ANeA
PE (AI)I
(z, p, YNA'%¢ for any z<p<y.
There is a such that
ac(z, p, ,v), aSA'={z|(2', 2z, y¥INA#¢ for any z’'<z<y'}
if a lies on the left side of p. (See Fig. 12)
(z, a, PNAXP
(z, p, YNAXS o pEA

Example A={—’1'— | z&Natural number}

A'={0} AD'=¢
Definition 4
A subset A of R is open iff for each point pEA there is an open interval (g, b);
a<p<b such that (a, 5)SA i.e. (a, b)NA®’=¢ as in Fig. 13.
The family of all open set in R is called the usual topology, and denoted by O.
The next theorem will he easily proved.
Theorem 5
Let O be the usual topology, then -
(i) R, ¢=0
(i) If A, B€O then ANB€O
(i) For any SE€0, U{A|AeS}€0

2. General Topology

Definition 5
Let X be a universe and a family O of subsets of X is called a
topology for X iff the next three conditions are satisfied (See Fig 14)
(i) Xe0 A
(i) If A, B€O, then ANBEO TR
(ii) For any SE0, U{A|AeS}€0 Fig 14 0=(X,
If Sis th d family & th {6, ¢}, {8}, {c},
is the void family ¢°, then #} is a topology
U{AlAeg} =¢<0 for X={a, b, ¢}
The subsets of topology O are called open.
A subset M of X in closed iff A® is open.

Fig. 15 represents the family of closed sets.

Theorem
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If O is the closed family of a topology for X, then
(1) ¢€0

(2) If A, B€O, then AUBEO

(38) For any TEO, Nn{A|lAeT}eO

(If T is the void family ¢’, then N {AlAe¢’}=XeO.
Fig. 15 O={g, Hence, X and ¢ are both open and closed)

{a}. {ab}, {ac) Conversely, if a family O satisfies above conditions and if we define
;“ ; is fd(‘;“_’d O as the complements of sets of O, then O is a topology for X.
;:gm ly 40 " This theorem will easily be proved by De Morgan’s rule with con-

trasting Fig. 14 and Fig. 15.
Definition
Let M be a subset of X and A be a open set of O, the interior of M and M€ are
defined by the next equations.
Interior of M=M°=U{A|ASM}=U{AlANM =¢} (1)
Interior of M®=M%=U{A|ASM°=VU{AlANM=¢} (2)
and closure of M and M€ are defined by

Closure of M=M"=MC0¢ (3)
Closure of MC€=M?¢"=MFCOC=pf9¢ (4)
Theorem 6

(1) X°=X (2) M°SM (3) (MnN)°=M°NN° (4) MO°o°=M°
Q) ¢ =¢ @) MeM- @) (MUN)=M-UN- () M =M
Proof (1),(1) A€O0, X€O0, X°={A|ACX}=X
#LOC= X00=XC=g
(2) A€0, M°=U{AlASM}EM
@) MC°SMC from (2), & MEMPCC=M"
(3) MANY'=U{AlAN(MNN)°=¢}=U{A|AN (M°UNC)=¢}
=U{A[(ANM) U (AN NC°) =¢}
=U{AIANMC=¢ and ANN®=¢}=M°NN° for A€O
(3’) (MUN)"=(MUN)C¢=(MNNE)C=(MC2N NCO)C
= M€00y N°OC= M- U N~
(4) M2°S MO from (2). M°=U{A|ASM}0
o M=V {AlAS M%) =M°
(41) A,I--_—_-A/ICOCCOC=A,[COOCZA,ICOC=A,I"
Theorem 7
If O and O’ are topologies for X then ONO’ is a topology for X, but OUO’ may
not be a topology for X.
Proof
Xe0, 0 = Xeono’
A,BEON0O' = A,B€0, 0 = ANBe0, 0’ = AnBeONO’
SSON0' =SS0, 0 = U{A|AeSIS0, O’ = U {AlAeSleOnO.
The later part of the theorem follows from Fig. 16.
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0 is a topology for X 0’ is a topology for X OUOQ’ is not & topology for X

Fig. 16 The later part of theorem 7

3. Japanese family in Edo era

Let X be a universe and O be a subfamily of P={A|AS X}. We call O the Japa-.
nese family in Edo era, iff the following three or four conditions are satisfied,
(i) Xeo0, ¢¢0
(i) If A,B€0O and ANB=¢, then ASB or BEA.
(i) There is @ unique element ¢€ X such that if A€O and A*X then a€A.
The condition (ii ) means prohibition of “Nisoku-no-waraji”. This is Japanese peculiar
condition.
If z€ X, z%a, then “a” of the condition (fi) is called “z’s Tono” and X is called
“a’s Nawabari” the sometimes “z's Amae to Tono a”.
Let Y be a non.-empty subset of X and YE€O0, and O'={ANY|A€0} SO
then next conditions hold.
(1) YeO, g0’
(2) If M, NeO’ and MNN=x¢, then MEN or NEM
(iv) There is a unique element a€ Y such that if MO’ and M=Y, then a&M
The conditions (1) and (2) will be easily proved from the definition of O’ and the
conditions (i) and (ii).
The condition (iv) is an additional conditions of (i), (i), (ii), and we will assume
(iv) holds for any YeO.
If y€Y, y*a, then “a” of the condition (iv) is called “y’s Shujin” and Y is called
“a’s Miuchi” and also “z’s Amae to Shujin a”.
Theorem 8
Let O be a family of subsets of X which satisfies the conditions (i), (i), (i) and

(iv) for each YO, and let O he the complements of subsets of O, and let O’ be the
complements of subsets of O,

O={A°lAe0} O ={M°| MO’}
then O satisfies next four conditions.
(1) ¢=0, X¢O
(2) If A, B€O and AUB~X, then ASB or BEA.
(3) There is a unique element a€ X such that if A€0 and Ax¢, then acA.
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(4) For each YEO, there is a unique element a€ Y such that if M€O’ and M=*=¢
then ae M.

O is called “Sotomono” of O, and O’ is called “Sotomono” of O,

Proof of (2) If A, B€O and AUB=X iff A%, B°€0 and A°NB°=¢ then A°SBC
or B°SA¢ by (i), iff ASB or BEA.

(3) There is Tono a€ X such that A€O and A* X then a€ A iff A°€0 and A°=*¢
then a€ A°.

(4) is the same as (3).
Examples.

VN Fig. 17 xxx mean the competitive spirits between & and c.

means the direction of Amae of & and ¢ to Tono a.

—_——

b xx xxxx ¢

1)
1

-

© O

(O Nawabari

-
e

0 . Sotomono

Fig. 18 Tono is safety and O is dangerous

O : Nawabari

0 : Sotomono
Fig. 19 Tono is dangerous and O is safety

Acknowledgement

On the lecture in the Tokyo University in 1979, the auther have lectured the contents of this paper.
Mr. Akio Tsumura, Department of Science of the Tokyo University, who has attended the lecture,

pointed out the error which was contained in theorem 8 and in this paper the error has corrected according
his advice.

References

1) A. Robinson; Non-standard analysis.
Ser. A64) p.432-440, 1961.

2) A. Robinson; Non-standard analysis.
3) M. Saito; Non-standard analysis.

Indagation Math. 23 (Proc. Royal Acad. Sci. Amsterdam

North-Holland 1966.

4) H.J. Keisler;
U.S.A, 1976.

Tokyo-Tosho, 1976.

Foundations of Infinitesimal Calculus, Prindle, Weber and Schmidt, Boston Mass.,

5) K.W. Anderson and D.W. Hall; Elementary Real Analysis, McGraw-Hill Kogakusha, Tokyo 1972.
6) J.L.Kelly; General Topology, Springer-Verlag, 1961,



