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Integration on H-Field
George TANAKA™

Abstract

In this paper, we use Prol. Yasusi Hattori’s Field or H-Field as the base of Integration and
construct the most general integral theory.

1. H-TField

Let A be a subset of X, and H he a subclass of P={B; BE X|.
A={A,, Ay, Aal is said to be a partition of A helonging to I iff
(i) For each i€f{1, 2,-, n}, AieH
(i) 4=y a,
(ii) For each i, j€{1, 2, n}, i#j; AiNA;=¢
Definition 1
H is called a 11-Ficld iff
(1) ¢eH
(2) For each A, BEH, ANBeH
(3) For each A, B€ H, there is a partition of A~B=AN B¢ belonging to H,
Theorem 1
Let H be a H-Field and 4={A,, A;,-*, An} be a partition of A belonging to H,
4'={By, By, -, Bu] be a partition of B; then there is a partition of AN B helonging to
H,
Proof
We will prove this theorem in the case of m=2, n=1.
From the definition of a partition,
4={A,, A.}, 4'={B}, A=A,uA,
ANA=¢, A, A, BEH
“ ANB=(A,NBU(A.NB)
(ANBN(ANB)=¢, ANB, AsNBEH
Hence 4"={A,N B, AN B} is a partition of AN B helonging to H.
Example 1
Let X={a, b}, P={X, {a}, {bl, ¢} and O={X, (al, ¢}
(Fig. 1), in this case, ¢€ 0O and O is closed by the opera-

tion of “N”, Hence the conditions (1) and ( 2) are satis-

fied, but the condition (3) is not satisfied. Because there Fig.1 Thelrepresentation

is no partition of N~{a}=1{b} belonging to O, O is an of O={X, la, ¢}
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example which is not a H-Field,
Theorem 2
Let H be a H-Field, if A,, As= H, then there is a partition
4={B,, B.,"::, By} of A,UA; belonging to H such that
BS A, or Bi€ A, for any i€ {1, 2,---, n}
Proof
MUA=AU(A~A))
There is a partition 4'={Cy, Cy,***, Cu} of As~A, helonging to H, then
4={A,, Cy, Cy, -, Cnl
is a partition of A,U A, belonging to H Such that
AGA CGEA, for any i€{1, 2,---, m}.

2. Measure 2 on H

Definition 2
Let H be a H-Field and s be a function of H into non-negative reals which is
denoted by R~R7, i.c.

H Lo R~k
(¢ is called @ measure on H iff for any A H and cach partition 4={A,, A,,-, A,}
of A belonging to H,
n (AD=pu(AD +u(A)+ - +p(An),
(Additivity).
In this case, ;¢ (/) is said to be g-measure of A and A€ H is called pg-measurable
set.
Theorom 3
Let H be a H-Field and ;£ be a measure on H, the next propositions arc satisfied
(1) u (p)=0
(2) If A, BeH, A< B, then u(A)Zu(B).
(3) If A, B, AuB= H, then
() +u(B)=p(AUB)+pu(ANB)
Proof
(1) ¢€H by the definition 1(1 ).
pUP=¢ is a partition of ¢ belonging 1o H.
s (@) (@)= plpU )= p(eh)
o pn(@d)=0
(2) B=AUu(B~A)
There is a partition 4={C,, -+, Cy} of B~A belonging to H.
4 ={A, C, -, Cu}
is a partition of B belonging to H.
oo (B =p(A)+p(C) A+ (Cr)
u(AYEu(B)
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(3) There is a partition 4={C\,"-", C,} of
AUD~A=B~A=B~(AND)
belonging 1o .
(AU B)=pu( D)+ p(CH+ -+ pu(Co)
s w(B)=p(ANB)+p(C)+ -+ u(Cn)
From these equations, it follows that
pCAUB)+u(ANB)=pu(A)+ u(B).

3. Upper and Lower Integrals

Definition 3
Let H be a H-Field, £ be a measuse on H, f be a bounded function of a p-

measurable set A4 into R, (Reals), and 4={A,,":-, A} be a partition of A belonging to
H.

“Sum in Excess: 84", “Sum in Shortage: s4”, “Upper Integral: S”, “Lower Integral:
s”, are defined by the next equations

sd=§ sup F(ADE(AD  (Sum in Excess)
sd=%linf FCADu(AY) (Sum in Shortage)

Tfay=S=ir‘1’f Ss (Upper Integral)
4

Jfa/t=s=s;xp 54 (Lower Integral)
A

Theorem 4
Let g be a bounded function of a pg-measurable set A into R, under the same

conditions of definition 3 and using the notations
[r=[rap; [ =] fa
4 - 7

the next propositions are derived.

(1) If 4, 4" arc partitions of A€ H, belonging to H; then sy<Sy
2> [r=fr

> [r=-fpi [r==[=p

(4) For any z€ A, f(2)<g(2); then
Jrsfo [rsfo

(5) I_f-*__[géi(f—* g) éI(f—i-g) éTf+Tg

o> [} |1
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(7) It is not always true that
| rl=f1n

Proof
(1) A={Al,"'- Anl; d’={Bl,"', Bm}; A”’—'{A:”Bl,“‘, AlﬂBm,'“. Annﬂx,'”.
AN Byl
It is easily proved that
S4S sy £S89 S8y & suESy
(2) ()= sup siSSs
£f=st}p saél‘t’}f .5.4-=J r

(3) S, =3 sup F(AD-u(A)
s(d,~ )= inf (—F(AD) - u(AD
sup £ (A4 =—inf (—fF(A))

S(4, H=-s4, —f)

f Feinf (4, F=inf(=5(4, —f)=—sup (4, - f)=-£(— '

Hence the first equation is proved.

SCA, f): —S(A) _f‘)

JF=sup 4, Y=sup(=5C4, =)= int 54, ~)= = [ (=P
(4D S(4, ISS(4, =vinf S, IS5, )

Tf‘=i2f S(4, f)éi‘l;lf S4, g)=Tg

~gs—r= [ <[

2 Jr==[=pz-fp=]4
(5) sup(f+CADSsup £ (AD+sup y(}l.-)
SCftyg, HESCL D+S, D
It s derived that

igf S (f+g, A)éidnf S(A A)+i51f Sy, D

~ [uros]rfo
[rosfp+fp

if+J_'g=—T(—f‘)—T(—g)é—T(—f—u)=f(f+a)
(6) —=IlfISfElf] -

~[1r1=[ =115 rs[rsf1n1



George TANAKA  BEAETEMURLH (B178) 49

s Af o AL = i

(7) A=00,13; H={4, ¢}; p(D=1; f(D==1; f(2)=0 for x#0
Jr==r-ur=-15 [151=0-uy=0

'

In this case, (7) is not truc.

=1>0= f|f|

4. Double Integral

Theorem 5
Let H be a H-Field and A€ H, K be a H-Field and and Be K, then HxK={M
XN; MeH, NeK} is a H-Field and AXBe Hx K
Proof
(1) ¢=Mx¢p=pxNeHxK
(2) MXN, SxTeHxK
=MXNINEXT)=(MNS)X(NOT)
e HXQ (Fig. 2)
(3) MXN, SXTeHXK
MXN~(SEXT)=(M~S)X(N~T)
UM~S)XNATY) UMNS)X(N~T)
There is a partition 4={Cs; i=1,-, n} of M Fig. 2 (MXN)ﬂ(b XT)
~S belonging to H and a partition 4'={D,; j= =(MNSIX(NNT)
1,--+, m} of N~T belonging to K.
" (.M~S)><(N~'I')=LIJLJJ CixX D;

(M~S)XNN T=U CGX(NNT)
INS)X(N~T)=U (MNS)XD T
(MNHXN~TI=UJ (MNS)XD, it
MXN~(SXT) o e
=(ULjJC.—><I),)U(LiJC.><(NnT)) M5
uUWMNS) XDy O=(M~SIK(N~T)
7 ' @=(MN SIX(N~T)
{CiXDj, (MNSYXDj, Cix(NNT); A=WM~SIX(NNT)
=1, n; j=1,--m} Fig.3 MXN~(8XT)

is a partition of MXN~(SXT) belonging to HX K. (Fig. 3) From (1)(2)(3)
HXK is a H-Field and A€ H, BEK=AXBe HxXK.
Definition 4
Let H be « H-Field and A€ H, K be a H-Field and B K, then
HXK={MxN; Me H, NeK}

is a H-Field and AXBe HX K from Theorem 5.
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HxK —*

Let # be a measure on H XK,
d={Ay, -, A,}
be a partition of A belonging to H.
4'={By, ", Bn}
be a partition of B belonging to K. then
4"=AXA'={ A, X By, AyXBu,*y AuX By, AuX By}
is a partition of AX B belonging to HXK,

- R~R~

Axp —7I

bounded_)

.

Sa-=504", f): g‘{ Esupf(thBj) £ (A BJ)‘ (Sum in Excess)

sa=8C4", f)= 121 12"'1 inf £ CA:X By) & (AiX By, (Sum in Shortage)

ffdfc=inf S4", (Upper Integral)
Axa dll

f fdn=igp sa», (Lower Integral)

AxB
If x4, v are defined by the next equations
LMD =g(MXB) for each MeH
v(N)=g(AXN) for cach Ne K
then it is easily proved that
[ is a measure on H,
v is @ measure on K,
Ci) {g v} is called to be independent iff for each MeH, NeK;
(M X N)=p(M)Xu(N)
(i) {z »} in said to be dependent iff there are Me H, NeK such that
ECM X N) # p(M)IXu(N)
Theorem 6
Under the conditions of dcfinition 4, the next propositions are satisfied
S
B bouudea) R
{Gx(a:, y)=f1(z) for ecach y€B
g(z, v)=Fy) for each z€ A
then g, ¢ are bounded functions of AXB into R, and

T(gl +g2)dr =Tf1dﬂ+ Tfi_»du

S
(1) 4 bounded R,

i(gl+gz)df:=if1dﬂ+ijéclu

(2) TIf {z v} is independent then
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" {il:i‘f(*’ ¥) dﬂ:l dv: QD

l [, *)(lu} dp: 2

FCowdp|dv|
) ) -—<-.l [‘l‘f(*, '!I)dﬂ] dv: @

—
Igﬁ

[S——
v

Ff/(* )y | dy

P

T e v lan| _
é[ O (D'(ﬂ_;”iff("*)(h)}dﬂ @

,[‘ r_j‘/('- *)IZDT([/L

3 T
(@} ::J _/(lll,
Proof of (1)
N +gu)=§}§‘, sup(gn +¢2) (AiX By £ (AiX By)

= ;[’2 sup (A X By) £ (A X B,-)]

+ %‘,[; sup ¢:{Ai X By) £ (AiX B)'):|
= ? sup f1(AD e (AD+ ;} sup f2(B) v (B
=S4, fO+SL, £2)
It is derived that
f (g tg)de= ff. du+ r fodv

using —¢; and --f}, the next equation of (1) follows.
(2) is easily proved.
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