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Geometric Proofs of Cauchy’s and Taylor’s Theorems
George TANAKA*

Abstract

In this paper, we assume Rolle’s Theorem as a starting point (Fig. 1) and prove
Lagrange’s Mean Value Theorem by the method of the equating function F (Fig. 2).

About the proof of Cauchy’s theorem, we utilize the inverse function g~ of g (Fig. 3).

We prove Tayloror’s Theorem by the method of the approximating function g and
the equating function F. (Fig. 4, Fig. 5)

Rolle’s Theorem
Let f be continuons on [q, b] and differentiable on (@, [5), and suppose that

f(a)=f(b). Then there exists a point c€ (a, ) such that f'(c)=o.
Rolle’s Theorem is presented as Figure 1.
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Fig. 1 Rolle’s Theorem
Lagrange’s Mean Value Theorem.

If f is continuons on [a, b] and differentiable on (a, b) then there exists a point
c€ (a, b) such that

FB)Y=f@+f () (b—a)
Proof

Let us define the equating function F(x) as follows

F@) =f(z) —m(z-b) ; m=LE =L@

then F is continuons on [a, b)), and differentiable on (a, ).
F(@) =f(6)=F ()
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F(x)=f'"(x)—-m
@) =f'(2) romo

By Rolle’s Theorem T »
o=F'(c)=f"(c)—m Cx)= feo-mex-2

- f' (C) _J (b) :la (a)

!
S O -@=f(¢-a) |
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Fig. 2 Lagrange’s Mean Value Theorem

Cauchy’s Theorem

If f and g are continuons on [a, b] and differentiable on (a, &), and for eaeh
ze€(a, b), g’'(x)>0 [or g’(x) <0], then there exists a point ¢ € (a, b) such that

SO =f@ _ f©
gb)—-g@ g'(

Proof

we will prove the case, for each x& (a, b), g'(z)>0.

Let z, z’€ [a, ), x<z’, then [z, 2’] S [a, &] and (x, z’) S (a, b). By the
assumption, g is continuons on [z, x’], and g is differentiable on (z, z’).

By Lagrauge’s Mean Value Theorem, there exists a point ec (x, x’) such that

f(&@)—f@)=f"(e)(z'-2)>0 y

That is g is strictey circreasing function on
[a, b].
Let a=g(a)<g(b)=§ ) 8
Then there is the inverse function g-! of g, l'
that is g=! on [a, B]. |
Let t=g(z), z=g7'(8), y=f(x) fa ,'
a=g'(a), e=g='(f) "
SR {
t
e a— S e T
J(g~'(®)) is continuous on [a, 8] and A=(g(a), f(@)=(a, f(a))
differentiable on (a, B). Tange:ﬁiggg};, FEN=(8, fb))
-1 -1
dfi (gdt e»n_4 (;—‘) . deg t(t) - ,ﬁ(b; _{(a) = ggﬁ;:é((z))

= af(x) / dg (x) Fig. 3 Cauchy’s Theorem
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By Lagrange’s Mean Value Sheorem, there exists a point y € (a, 8) such that
c=g7(r).
[ (B —fg (@) _ df(g (1)) _ df(c) _ df(c) /dg(C)
B—a ‘ dt t dx dzx

. J@®)—f(a) f’(c)
g)y-gl@ g

Taylor’s Theorem I

If f and its derivative f’ are continuons on [a, b] and f’ is differentiable on (a, b),
then there exists a porut ¢ € (a, b) such that

FBY =@ +f (@ b-a)+ % () (b—a)*
Proof
We will define the approximating function g(x) of f(b) as follows
g@=f(x)+f'()(b-x)
The approximating function g(x) of f(b) is pictured in Fig. 4. Next, we define the
equating function F as follows

F@) =g@)+ =8 [ £(5) ~g(@)]
Flay={@
It follows that g is differentiable on

a, b), and
g@=f'@~-f'(@+f"(x)(b-x)

=f"(x)(b-x)

F is continuons on [a, »] and 3(“3"'@) Treemee
differentiable on (a, &) and Hee-ay

F(a)=f(b)=F®)

/ta) (6-a)

¥ — 2(b—x) -
F'() =g (@)~ 5= [f(®) —g(a)] PN P

=f"@)(-2)]

~20=D) 1) —g(@)] = —
Fig. 4 The approximaiing function
By Rolle’s Theorem, there exists g(x) of f(b) and
¢ € (a, b) such that the equating function F.

0=F'@ =) G- -2L=D 1 1) ~g(@]

L fB)—gl@ =5 [ b=a)

Example
f@)=1+z+2% ze[0, 1]
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The approximating function g(z) of f(1) is defined as follows

glx)=1l+z+22+(1+22)(1—-2) y
=242z —2? 3 Feo)=3
= 1 = _3. '\L\;‘)
g®=2, g(5)=23, 4¢

g()=3=f(1)

The equating function F is constant as
follows 2
F(x)=g(x)+Q-2)*[f(1)—g(®]
=2+2z—2%+ (1—2)*=3

These functions are pictured in Fig. 5

I 1 x
Fig. 5 {, g and F in Example
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Taylor’s Theorem II

If f and its derivatives f’, f,”..., f™ are continuous on [a, b] and JFm i
differentiable on (e, b) then there exists a point ¢ € (a, &) such that

f(b)—f(a)+—1—f’(a)(b a)+ = S (@) (b=-a)?
+...+_73-!_f(n)(a)(b_a)n

FmD() (B—a) ™+

(n+1

Proof
The approximating function g(x) of f(b) is defined as follows

g@=f(2)+f(2) =)+ " (x) (b—x)?

+...+%f€u)(x)(b_x)n

From the assumption, g is differentiable on (a, b) and
g (@ =f"(x)=f'(@)+f"(2) b—2)~f"(x) (b—x)
oo _TnETfm)(x) B —z)n-1

+ 7}! FE(L) (b—2)"

= FT @) -2
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The equating function F(x) is defined as follows
F(a)=g(@) + =R [(5) —g@)]
From the assumption, F is continuons on [a, 4] and differentiable on (a, &) and
F(a)=f(b)=F(&)

F'(z) =g'(2) - D01 £6) - g(@)]

=t @ @-an- EENED ) —g(a)]

By Rolle’s Theorem, there exists a point ¢ € (a, ) such that

0=F' @ = fr2 () b=y —LHEDLZD 1) —g o))

" f(b)—g(a) = _(_n-:—l)'— FOD(0) (h—g)™

Hence, the theorem is proved
Taylor’s Theorem III

If f and its n derivatives f*, £/, - « -, f*® are continuons on [a, 4] and f™ is
differentiable on (a, b) then there exists a point ¢ € (a, b) such that for m>0,

FB) =fl@)+— f'(a) (b=-a)+ ! —r—f"" (@) (b—a)?
+ek L fW (@) (B —a)

- ﬁf(n'ﬂ) (C) (b _a)‘m(b "C) n+l=-m

Proof

In the proof of Taylor’s Theorem II, if we use the equating function F(x), for
positive m

F@)=g(a) + =200 )~ @]
where g(x) is the approximating function of £(5).
Fa)=f(b)=F(®)

From the assumption of the theorem, F is continuons on [a, 4] and differentiable
on (a, b) and

F'(z) =

m F(@) b=y = ZEZD L £6) g ()]
By Rolle’s Theorem, there exists a point ¢ € (@, b) such that

0=F/(e) = f® () b=y~ PL=DL £(5) ~g(a)]

" SB) ~g@) = [ BB —c)



100 (#59. 3) Geometric Proofs of Cauchy’s and Taylor’s Theorems
Hence the Taylor’s Theorem III is proved
m=1, then

f(B) =g (@) =3 fm () (b—a) (h—c)"

n!

This is called Cauchy’s remainder term.
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