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Series System Reliability for Two
Failure Truncated Weibull Processes

Shun’ichi KIGAWA*

Abstract

Inference procedures are discussed for the series system reliability for two failure
truncated Weibull processes. An lower confideuce limit (LCL) for the series system reli-
ability are obtained.

1. Imntroduction

In the development of complex systems, the first prototypes produced will contain
design and engineering weakeness. To correct these weakeness or deficiencies, these
prototypes are subjected to a development testing program. During the testing, weake-
ness are identified and subsequent redesign are followed out to develop correction for the
problem areas. Generally, some modifications are introduced into the system throughout
the testing phase. If the modifications introduced into the system during the test are
effective, then the system reliability should increase over the testing phase.

Duane? proposed to consider the system reliability growth during development test-
ing as a nonhomogeneous Poisson process with intensity v () =28¢#-1, called a Weibull
process,

In the present paper, we shall discuss the problem of inference on the series system
reliability when each subsystem is subjected to a independent development testing prog-
ram. It is assumed that each subsystem produces different nonhomogeneous Poisson pro-
cesses having intensity,

ve(t) =2Beth-1, i=1,2, (1)
with a; and B; are unknown positive parameters.

The process will be referred to as failure truncated if it is observed untill the first
n failure times, T\, T%, --+, Tn have occurred.

Suppose each subsystem is in a independent developmental program until a time at
which changes in the system cease. If changes cease at the time of the ns~th failure,
tn;, with respect to each subsystem, and if it is assumed that the intensity, v:(¢s.),
remains constant thereafter, then the subsequent times between failures of the subsystem
will be independent exponential variables with failure rate v;(¢4,). If two subsystems
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are independent, the the current series system reliability for mission time f=1 would
be given by,
R=exp[— (v1(tn)) +v2(2n)) ] (2)
In Section 2, we consider the inferences on R, which are closely related to the

works of Crow? and Bain et al.®

2. Inference Results

Suppose data from two Weibull processes are truncated at the 7;-th failure, yielding
observed failure times 24 <t <+ <tin,=tn, i=1,2.
The MLE’s of 24, B¢ are,

; J :
Re=mfty, Bi=niRInltalti), i=1,2. (3)
=
Therefore, MLE’s of v((¢s) are,
fu(lm)=ﬁ¢ Ettﬁ“_l=n¢ ﬁg/tm, i=1,2. (4)

In Crow,? it is shown that for a Weibull process with failure truncated data,

4n?v(tn) _ .
Gy L9

where Z and S are independent Chi squared random variables with respective degrees of
freedom 2(n—1) and 2n. This result was used to show that,

Prl:Z-S/4>;u]sG(;t/n)=Sme-:":"-2 2’3 1 ( L )texp(——%—)dx. (5)

o (n—2)! So i\ x
But he evaluates this integral by the numerical method.
Next it is shown that above distribution is obtained by another method.
Kotz & Srinivasan® have identified the following distributions. The p.d. f. h(y)
of the product Y=X,-X, of two independent Chi-square variakles with r, and 7, degre-
es of freedom is,

_ YO+ (-1, (/)
M= eI T ey Y2 6

where Kn(u) is modified Bessel function of the second kind, and I"(x) is the gamma

function. In our case, we substitute r,=2n, r,=2(n—1) into (6) and the p.d. f. of
the product Y=2Z-8 as,

- YK(VY)
h(y)-_.‘).""“’z I’(nl) I'nh-1)" y20 (7)

The c.d. f. of h(y) is, after some calculations,

_ oo _(z n-1 . 1 B 1
6@ =\ "hdy=1~(3)" s+ aytamn™

s (z/4)* 1 _ 1 z 1
XS FD (A=D1 [‘k’z‘ T(‘“T”") R 7¢ T ul
+ i (klz + kis Aoeerees ]_)]. n=1, 2' ey (8)
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where y=0.57722 (Euler’s number).
To estimate the reliability of series system, we substitutc £:(¢n), 7=1,2, into R,
and get the MLE as,
Re=exp[ — (01(tm) +52(tn1) - (9)
The following method to obtain a lower confidence limit (LCL) for R of series system
has been proposed by Beljaev et al., To obtain a lower a confidence limit of R, we
need the p.d. f. of v(tn)/6(tn)=Zs, i=1,2, and it is straightforword to show that
the p.d. f. of Zs is,
2ngm=11 zm=3/2 Ky(2 /12 7)

g1(2) = Feg Ton-1 , 220, i=1,2 (10)

This result is used to obtain,
v(tny) v (¢ny) -

P,{ ﬁ(t,,,l) + ﬁ(tn:) <A.(n.,nz)}—a an
where A.(n,, n2) is the constant depending on a, ny, 7,.
The event,

2

5 2 < a,(ny, ) 12)

g1 f‘(tm)
can be regarded as a set of inequalities inposed on the parameters »(¢,,) the probability
of satisfaction of which is equal to a.
If we consider the maximum of the function,
_ 2
¢=max {2 Vi(tn)) (13)
‘!3
On the set defined by inequalities (12), then, obviously,

2
{(v1(tny), v2(tny) I(/;=max {igl”t(tm)] 2 él”t(tm)}

2{(¥1(2ny), v2(tn,) Iél %‘}<Aa(nh ny)} 14

From this, we obtain,

2
P, (R=exp[— (3 vi(ta)]2 R=exp(—¢)}
=P g3 vi(tnd} 2P D ) A (ny np)) —a (15)
g vl 2808 =5, < Al n)) =

Thus, the problem of finding the lower confidence limit for R is reduced to the problem
of finding the maximum of the function (13). The answer is found in explicit form :

95= 1122 P1(tn) Aa(my, n3). (16)

Thus, the LCL with confidence coefficient no less than « is,
R=exp{—( max 5¢(tnd) Ax(ms, na)}. an

To calculate these A.(my, 71,) velues, we need the c.d. f. of,

= 2 V(tn) .
T :gl Di(tny) =Zi+2s

We consider two method of approximating the c¢.d. f. of 7.
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Method 1.9
Z: is the H-function r.v., and 7T is the sum of independent H-function r.v..

Therefore approximating p.d. f. can be obtained. We can evaluatc the accuracy of

the approximation by the method developed by Posten & Woods.”

Using the first 10 moments of the exact and the approximate distribations, we can
evaluate the accuracy of the Laguerre approximation K(¢) to the cumulative true distribu-
tion F(t) of the sum T=2Z,+2; of the i.r.v’s with p.d. f.’s given by (10), where the
Laguerre p.d. f. is based on the first three moments of f(¢) which is p.d. f. of F(2).
Then the moments of the corresponding transformed density fecnction p(¥) which cor-
respond to k(¢) and g(y) which correspond to f(z) must be determined, where y=e"t.

From a knowledge of these moments, the accuracy of the approximate distribution
may be evaluated. First, the m. g. f.’s of g¢(z), i=1,2, is calculated and denoted by
My (7).

Hence the m. g. f. of f(¢) is,

M(r)=M:(r) -My(r)
so the moments are,

y'k:f(x)=[7fi;kk—M¢(r)] L o 18)

It then follows immediately from (18) that the first three moments of the exact p.d.
J. f(t) are, when mi=n,=2, plopn=1, p'ran=2, w'2:p0=8, w's:xp=>54.
The Laguerre polynomial (p.d. f.) based on these three moments is,

3
k(t)=,§odj L ¢(), 0<t<oo, r=0. a9
where,
—_ (=D &(n\,._ A+7r)n ., _
dil n!(l‘*'r)n Eo( l)( l)l—wy l:f(‘), 71—0, 1, 2, 3,
ro=t
$O=prry (20)

and (Wp=n(n+1D)(n42)--- (n+m-—1)
Ly @t) =1, Li'®(t)=t—1, Ly®(t)=12—4t+2, Ly®@)=3—-92+18t—6.
On evaluating (20) for 2=0,1,2,3, one obtains,
do=1, di=1, d;=0.5, d,=0.3333.
Also, from (21) with =0, one has,
P()=et
Using these results in (19), one obtains the desired Laguerre p.d. f.
k(t)=[—145t—2.5t2+0. 33333 ]e* 21
It remains to determine the first ten moments of p(y) and g(¥), denoted, respecti-
vely, by #'k:pey) and p'r:q3), k=1,2,--+,10, where y=e*. Specifically, since t=—In ¥,
the transformed Laguerre density function is,

r)= [—1+5(1n%) -2 5(1n-§;)2+0_ 3333(11131’_)3]'

and the %-th moments is,
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#apor=ELy1={ 7 p() d.

In pacticular,
1hrp=0.249878, p'2:p¢y= 0.061706, pu’3:p(yy=—0.007818, p’s:p¢yy=—0. 036801,
t's:py=—0. 049382, p's:p(y)=—0.054560, p'7:p¢yy=—0.056151, p's:p(yy=—0. 055935,
#'9:p(yy=—0. 054799, #'10:p¢yy= —0. 053201.

Similary, f(¢) is transformed into the densty fanction ¢(y) whose k2-th moment is,
#1:9¢0=0. 307678, #t'2:(»3=0. 162965, £'3:4¢y)=0. 103625, p’4:4¢y3=0. 072643,
#'5:00)=0. 054163, p'6:9¢»)=0. 042150, p’7:9¢yy=0. 033852, p’'s:q¢y)=0. 027836,
#'9:q¢5)=0. 023368, £'10:0¢yy=0. 019912,

Finally, to evaluate the error of the approximation, one utilize Goertzel’s algorithm®
Ur=dr*+ @y —2)Urs1— Ursa,

to determine, respectively, the quantities U, £=10,9, ---,1, from which one then deter-

mines the error S=2U, Vy— ¥, incurred by using the distribation function P(y) to esti-

mate Q(y) for a specified value of y, where,

k —_ ; —_
di*=(-1)* (,zr)?__;‘:l ( (,‘?_’ j()’,’“(ﬁj) !1)" (#jiat)— # i)

The values of dy* are given in Table 1. The error in ¢.d. f. P(y), denoted by ¢ (P
(), is evaluated for y=1.0, 0.8, 0.7, 0.6, 0.4, 0.3, 0.2, 0.1 and for those values
of y correspording to t=E[T]+k%or, k=0,1,2,3. Since Y=e* varies inversely with ¢,
p(y) corresponds to the complimentary d. f. K(¢)=1—K(t), where t=—Iny, 0<y<1.
That is,

e(P(Y)=—¢e(K()
Thus, the error in P(y) is numerically equal to that in K(2) but opposite in sign.
Finally, since 2(¢) maps into p(¥) and f(¢) maps into g(y), it follows that 1—(K(z)
—eK(¢) is a valid approximation to the exact 4. f. Q(»).
From Table 1, the values A.(2,2) are obtained.

Table 1, Enaluation of Accuracy of the Lagunerre Approximation of distribution

of T=2,+2,

p | a : vy | 12k | Ewror:s !F<z>=§;,fgg;g F)=

1 0. 73592 0 1.0 1. 0. ’ 1. 0. ‘
2 | 0.11067 0.2231| 0.8 1.10024 | 0.13339 0.966844 | 0.033156
3 | -0.0538738 0.3567 0.7 1.07634 | 0.126366 0.948974 |  0.0500261
4 | -0.0268706 0.5108 0.6 1. 00481 0.287587 |  0.717223 | 0.282777
5 | o.0166173 0.9163 0.4 0.731845 | -0.0194449  0.75129 0. 24871

6 | -0.0174076 1.2040 0.3 0.544591 |  0.122806 0.421785 | 0.578215
7 | 0.0105522 1.6094) 0. 2 0.34463 | -0.15933 0. 50396 0. 49604

8 | -0.0034582 2 |0.1353% 0.225558 | -0.264553 0.490111 ' 0.509889 |
9 | -0.0436571 2.3026 0.1 0.172164 | -0.120987 |  0.293151 & 0.706849
10 | 0.114641 | 4 0.0183156 | 0.115089 | -0.0818983 0.197887 | 0.802113
11 6 0.00247875 |  0.0768257 -0.123367 0.200193 |  0.799807
12 8 0.000335463 0.037332 | -0.0520018|  0.0894238| 0.910576
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Method 2.
Let the p.d. f. of T bc f(¢). We obtain after some calculations,

f® =51

2zt

c+foo ny+ng
e"‘[n,”l‘l nom—1 p—(m+md+2¢ =57 %
o0

e~

X W —gay+1, ;(’?)-W-n,n.;(%)]dr,

where W,,.(z) is Whittaker’s function.

This inversion of integral transform can be obtiain by numerical method.
But in this paper we don’t discuss this mumerical evaluation of this integral tarnsform
further.
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