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Optimal Burn-In Testing

Shun’ichi Kicawa

Abstruct

A mathmatical model permits determing the duration of payoff-optimized burn-in testing
program. It is assumed that system failure may be due to either poor components or good
components. The payoff is difference between the s-expected profit in the field activities and
the total testing cost. The mathmatical tool is the optimal stopping problem of Markov
chain. A numerical example illustrates these concepts.

1. Introduction and Assumptions

Today we have very complex systems in our society and the factories. Before the
system is used, a burn-in testing is usually considered as effective means of eliminating
early failures due to deffective elments in a laboratory environment. Suppose the system
consists of J components. It is assumed that system failure may be due to either poor com-
ponents. or good components. Before testing begin, the system has i({=0,- - -, J) poor
components. (Kigawa, S. [1])

The following assumptions are made:

(1) The failure rate of the good components is ¢,, and the failure rate of the poor com-
ponents is ¢ (@.<¢).

(2) When the component fails, the failed component is replaced by the new one. The
probability that the new component is good one is (1—p), therefor the probability that

the new one is poor one is p.

(3) The testing cost per time is ¢ (yen)/time

(4) After we stop the burn-in program, untill the system failure in the field activities
we acquire the profit r (yen)/time, After the system fails, it is supposed that the
system can’t be used any more.

The s-expected profit associated with the field activities are tradeoff with the costs of
implimenting a burn-in testing program.

A mathmatical model permits determining the duration of optimized burn-in. A nu-
merical example illustrates these concepts.

2. Formulation of the problem (Dynkin etal. [2])

Let the system exist at each instant of time in one of the states formed by a finite or
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demumerable set E (state space). Here we consider the state as the number of poor com-
- JX

The process just described is a birth and death process Y={Y(¢);?R,} with state
space E and transition function

Pii($)=P{Y(t+5)=4Y(s)=1},
for any ¢, s>0 and {, feE.

ponents, therefor we set E={0, - -

This process satisfies the following conditions,

(1) Py (B)=2h+o(k) (Bl 0), 05<KT -1,
(2) Piyia(B=ph+oh) (B]0), 0<Ii</,
(3) Py,i)=1—(Li+pdh+o(h) (2] 0), 05K,
(4) Py, (0)=04,
(5) pi=ig(A—p), hi=({T—Ddop.
where o(k) possibly depends on i. The matrix
(-2, A 0 o --+- 0
m —Qtp) 24 0 0
A= 0 g —QAetp2) 2, 0
. 0 0 0 0 734 — s

is the generator of this process.
The underlying Markow chain X={X(#n) : neN} where N={0, 1- - -}, has the tran-
tion probabilities

i =D =gy =—2P
QG i-D=q s
A

QG, i+1)=pi=

witidi’

QG, 1)=0 (li—jl3D, i, jeE.

The time &; from arrival at the point i to exit from this point is distributed according
to the exponential law

P& >t =exp{— i+ pdt} (20).

From now we consider the underlying Markov chain X and r.v. §;. Let us suppose that
we observe the path X(0), X(1),- - -, X(»), and can at any instant » stop the migration
system. If at the time of stopping the system is stuated at the point i, we acquire a profit
Sf(@). In our case, f(7) is the s-expected profit untill the first system failure, therefor

F@y=1 [ Texp{- [(J-idg.+igl}dt

- r
T (J=Dpotig
The costs associatd with burn in testing is ¢ (yen)/time. Clearly, the total payoff at X
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(n) is f(X(n))—crs, Where 7, is the time for the n-th failure. The problem is stated as
follows :

The underlying Markov chain X with trantion probability Q(i, 7) and the total payoff
S(X(n))—cra are given on E.

It is required to:
1) calcuate the variable v(k)=sgp My(f(X(n))—cr.), where n represent all the possible
Markov times and M, indicates the expectation for the initial position of the system at the
point 4.
2) find the Markov time n, for which M (f(X(n.)) —crae)=v(k), @ denote an operator to
the formula for a function ¢

Qt,o(k)=§ Q(k, L)p(£) (the one-step shift operator).

By analogy with the theory of games, the variable v(k) is called the value of game,
and the Markov time n, is called the optimal stopping time.
Next we will show,
(k) >Qu(k) — cMyz,. (1)
We pick an arbitrary number >0 and denote by m the stopping time for which
Mo {f(X(m)) —ctm}2>v(£L) —¢, (LEE).
Obcause m is a function of £, X(1), X(2), - - -:say m=#(£, X(1), X(2), ). Now n=
1+4(XQ), X(2),- - -); that is, » is the stopping time corresponding to the strategy
which waits at X(0), and if X(1)=4¢, then uses the stortegy corresponding to m thereafter.
Then for any kCE,
v(R) > M{ f(X (1)) —cta} =M f(X(1)) —cMitn
=§‘.Q(k, LM o f(X(m)) —cMiry —cM gt
=§}Q(k, LIM {f(X(m)) —cra}—cMyr,
2%} Qk, £HX{v(£) —c}—cMir,
=Qv(k) —e—cMt,
SR 2>Qu(k) —cMyrt,.
Since »=0 is a possible stopping time, »(%2)=sup Mi(S(X(n))—cra)>Msf(X(0))=f(k) for
all & "
To show that » is the minimal such funcion, let g be an another function satisfying
(1) and suppose g>f.
For any stopping time #, since M,f(X())<Mg(X(n)),
MLA(X (1)) —er}<Mi{g(X(n)) —cra}< g (h),
hence v(k)=sup M{f(X(n)—cr.}<g (k).

Summarizing, we have deduced that the value of the game v is the minimum function
satisfying ;
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v(k)zg" Qk, Do) —cMiry,
v(R) 2> f(R), (k€E)
v(k) =0.

In our case these equations become

22 proCk+ 1) + @ k=1~ =553 T =5

- r
LO>y g oy vy o

v(R)>0.
Therfore we have

7 C
v(k)=max{ (]—k)¢¢+¢1 ’ Plv(k+1)+410(k—1)_ (]—k)¢..p+k¢(1—p) }-

3. The Optimal Stopping time

We denote by I' the set of all state 2 in which the profit function f(%) is equal to
p(k). We call this set the support set. Before giving a numerical example, we give the fol-
lowing main result characterizing the optimal stopping time.

THEOREM. 1
Suppose the state space E is finite. Then the time no of the first visit to the support set
I is an optimal stopping time.

To prove this we shall need the following Lemma
LEMMA. 1.
Let m be the time of first visit to a fixed set I' of states. If g satisfies (1), then the func-
tion h defined by

h(R)=Mg(X(m))—cral, REE,
also satisfies (1).
(Proof).
Let » be the time to first visit to I°, and let # be the time of first visit to J” at or after
time 1; that is, let’

m=inf{£>0; X(L)ET},

n=inf{£>1; X(L)ET},
If X(0)ET, then m=0<1<n; if X(0)&T, then m=inf{£>1: X(£)ET'}=n. Hence, m<n;
and it is clear that both m and % are stopping times.
Since g setisfies (1),

k() =Mi[g(X(m)) —crn] Z2Milg (X (1)) —ctn] 2Mialg(X(#)) —c14), REE (2)
On the other hand, if m=¢(X(0), X(1),+ - -) for some function #, then n=14+#(X(),
X(2),+ + +); hence
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Mi[g(X(n)) —cral X(1) =41 = M;[g (X(m)) —ctm] =h(j)
which inplies that

Mi[g(X(n))—crs) =2;.'. QCk, j)h(5).
This togather with (2) show that A(k)>Qk and since A>0 obviouly, % satisfies (1), i

(Proof of Theorem 1.)
Let us examine the average total payoff

h(R) =M f(X(n.)) —Ctao} (3)
which corresponds to the stopping time n,. It is required to prove that A=». According to
the actual definition of the value of the game A<p». To show the reverse inequality, we
will first show that 4 satisfies (1) and A>>f; then since » is the minimal function satisfy-
ing (1) and v>f, v<h as well.
Inasmuch as X(n.)&I" while f and » coincide on I', the function f may be replaced in eq.
(3) by », and (3) becomes

h(k) = Mi[v(X(n.)) —ctro), REE. (4)
The function » satisfies (1) and by Lemma 1, (2) implies that 4 also satisfies (1).
Next we show that 2> f, For k&I", Px{n.=0}=1 and therefore




126 (FB#160. 8)  Optimal Burn-In Testing

h(k)=Mi[ f(X(n,)) —ctac] = f(R).
Suppose for a moment that for some k&I, A(R)<f(k). Since E is finite, there is a state
J&E T at which the defference f(k)—h(k) is maximized; let c¢=f(§)—h(s) be this maxi-
mum value. By the way c is picked, %,(k)=h(k)+c>f(k) and k,(k) coincides with f(k)
at the point j, and, as the sum of A(k) (satisfying (1)) and the positve constant ¢, is also
satisfies (1). Consequently, 2, (®)>v(k) and f(j)=hk,(7)>v(j). This means that the point
J chosen outside the support set I’ belongs to I". The ensuring contradiction reveals the
inequality A(k)<f(k) is inadmissible. The optimality of the strategy », is thus proved.
Next we will find the support set I,

vy =max{ (8, proCh+1) +ath-1 £},

where ax=(J—k)gop+kd(1—p).
When »(k)= f(k), since we have

2(k) > prw(k+1) +qrw(k—1) -aL.,
we get

SO+ +arf(B—1)— aL‘ therefore,

r1
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BA-PN+UT=Rep ~ __ U=R)pep____ kg (1) _c
(J=R)po+ko J-k-1go+k+1)¢ J=k+Dgo+(k—D¢ 7
[Numerical Example]
N=10, ¢.=0.1, ¢=1, p=0.5, ¢/r=0.1.
r={04,5- - -, 10}

It kET, we hsve o(k)= (k) =—7= k)’ e
It k€T, we have v(B)=pw(k+1)+qv(k—1) -—-7;— and from this equation, »(1)=6.67,

v(2)=5.14, v(3)=4.03.
Fig.1 indicates a graph of the function f(%) and »(%) in the above case.

Fig. 2 represents I" varying ¢/r frome 0,00 to 0.17.
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