法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2024-10-06

Peng-Robinson状態方程式の異種分子間相互作用パラメータの相関

Arai, Tsutomu / NISHIUMI, Hideo / 西海, 英雄 / 新井, 努

```
(出版者 / Publisher)
法政大学工学部
(雑誌名 / Journal or Publication Title)
Bulletin of the Faculty of Engineering, Hosei University / 法政大学工学部研究集報
(巻 / Volume)
23
(開始ページ / Start Page)
1
(終了ページ / End Page)
20
(発行年 / Year)
1987-03
(URL)
https://doi.org/10.15002/00004017
```

Peng-Robinson状態方程式の異種分子間 相互作用パラメータの相関

新井 努*•西海英雄**

Correlation of the Binary Interaction Parameter of the Peng-Robinson Equation of State

Tsutomu Arai* and Hideo Nishiumi**

Abstract

Based on the relation suggested by Hudson-McCoubrey, a binary interaction parameter of the Peng-Robinson equation of state is correlated in terms of the ratio of critical molar volumes and/or absolute difference between acentric factors of each component. This correlation covers a system composed of hydrocarbons, carbon dioxide, nitrogen and hydrogen sulfide. Back calculation for more than 100 binary and ternary systems showed excellent capability.

§ 1. 緒 賞

広い温度、圧力域に渡ってPVT、エンタルピなどの熱力学物性が測定されている物質は多くはない。しかし、対応状態原理の発達は、無極性物質であれば、物性の未知な物質も臨界定数や蒸気圧が与えられれば、広い範囲に渡り相当の信頼性を持って物性を推測することを可能とした。しかし、状態方程式を用いて混合物の物性を計算するためには、さらに異種分子間相互作用パラメータ m_{ij} が必要である。一般には m_{ij} は経験的パラメータとして 2 成分系気液平衡データを良く表すように定められる。しかし、混合物の物性を推算するためには、 m_{ij} が臨界値や偏心係数などの基本的な物性定数から求められなくては、その価値を発揮できない。Hudson-McCoubreyは、理論的に m_{ij} が臨界容積の比 V_{ci}/V_{cj} に関係することを示し 2i 、Reed 5i は交叉第 2 ビリアル係数に、この理論を適用し定性的な傾向を認めた。著者の一人(西海)は、 15 定数一般化BWR状態方程式のうちの第 2 ビリアル係数部分の混合則をHudson-McCoubreyの理論を反映するような形に置き換え、 2 2 成分系気液平衡データから 2 3 につったところ、いくつかのグループ毎に、 2 4 にの関数として相関できることを示した 4i 5 このことは、混合物物性が成分である純物質の物性のみから推算できることを意味している。近年、 2 2 定数のvan der Waals

[•]大学院機械工学専攻

^{••}機械工学科

2 (昭62.3) Peng-Robinson状態方程式の異種分子間相互作用パラメータの相関

型状態方程式が広く用いられるようになったが、混合物物性の推算については、ほとんど論じられていない。本研究の目的は、2 定数型状態方程式の代表的存在であるPeng-Robinson状態方程式に対し、 m_{ii} の相関を試みることである。

§ 2. Peng-Robinson状態方程式

Peng-Robinson状態方程式は次式で表わされる30。

$$P = \frac{RT}{v - b} - \frac{a(T)}{v(v + b) + b(v - b)}$$
(1)

ここで

$$a(T) = 0.45724 \frac{R^2 T_c^2}{P_c} \alpha \tag{2}$$

$$b = 0.07780 \frac{RT_c}{P_c} \tag{3}$$

ただし

$$\alpha^{0.5} = 1 + \kappa \left(1 - T_r^{0.5} \right) \tag{4}$$

$$\kappa = 0.37464 + 1.54226 \omega - 0.26992 \omega^2 \tag{5}$$

このように、Peng-Robinson状態方程式は、3変数対応状態原理に基づいており、 T_c 、 P_c 、 ω を与えれば無極性物質の物性値を計算することができる。

(1)式より, 第2ピリアル係数Bは

$$B = b - \frac{a}{RT} \tag{6}$$

一方,統計力学よりN成分から成る混合物の第2ビリアル係数 B_{mix} は

$$B_{\text{mix}} = \sum_{i}^{N} \sum_{j}^{N} x_{i} x_{j} B_{ij} \tag{7}$$

ただし、xi、xiはi, j成分のモル分率である。

ここで,(7)式に(6)式を適用すると以下の混合則が導かれる。

$$a_{\text{mix}} = \sum_{i}^{N} \sum_{j}^{N} x_{i} x_{j} a_{ij}$$
 (8)

$$b_{\text{mix}} = \sum_{i}^{N} \sum_{j}^{N} x_{i} x_{j} b_{ij}$$

$$(9)$$

3

 a_{ij} , b_{ij} は次式のように表わされる。

$$a_{ij} = m_{ij} \sqrt{a_i a_j} \tag{10}$$

$$b_{ij} = \frac{b_i + b_j}{2} \tag{11}$$

ここで、 m_{ij} は異種分子間相互作用を表わすパラメータである。一般には m_{ij} の代りに δ_{ij} (= 1 $-m_{ij}$)が用いられる δ_{ij} 。しかし、Hudson-McCoubreyの理論 δ_{ij} からは δ_{ij} の方が望ましいと思われるので、本論文では δ_{ij} で採用する。

結局,(8),(9)式は次式となる。

$$a_{\text{mix}} = \sum_{i}^{N} \sum_{j}^{N} x_{i} \quad x_{j} \quad m_{ij} \sqrt{a_{i}a_{j}}$$
(12)

$$b_{\text{mix}} = \sum_{i}^{N} x_{i} \quad b_{i} \tag{13}$$

 m_{ij} の値がわかれば、純物質の定数(T_c , P_c , ω)を用いて混合物の物性が計算できることになる。気液平衡計算手順やフガシチーの式などは、原報に従った 3 。

§ 3. 異種分子間相互作用パラメータm.jの相関と検討

Hudson-McCoubreyの理論によると、無極性物質から成る系のmuは次式で表わされる?。

$$m_{ij} = 64 \left\{ \left(\frac{V_{ci}}{V_{cj}} \right)^{1/6} + \left(\frac{V_{ci}}{V_{cj}} \right)^{-1/6} \right\}^{-6}$$
(14)

(14)式は m_{ij} に影響を与える因子が V_{ci}/V_{cj} であることを示していると考えられる。この考えに基づくとPeng-Robinson状態方程式 om_{ij} が V_{ci}/V_{cj} の関数で表わされることが推測される。なお、本研究で用いた純物質臨界値および、偏心係数は前報 ij に示した値を引用した。

3.1 ($C_1 \sim C_{16}$)アルカン, シクロアルカンから成る系

 $(C_1 \sim C_{16})$ アルカンおよびシクロアルカンから成る系について,気液平衡データ*を良好に表わすような m_{ij} の値を決定し,Fig.1に V_{ci}/V_{cj} との関係を示した。 $Hudson-McCoubreyの理論通り,<math>V_{ci}/V_{cj} \simeq 1$ では $m_{ij} \simeq 1$ を示すが, V_{ci}/V_{cj} が 1以外では,一本の曲線で相関するには困難なことがわかる。したがって,一般化BWR状態方程式のように m_{ij} を V_{ci}/V_{cj} のみの関数として相関することは,偏倚が大きくなり,好ましくない。そこで経験的ではあるが,新たにパラメータとして偏心係数 ω の差の絶対値 $|\omega_i - \omega_i|$ を導入し,次式で相関を試みた。

^{*}これらのデータはNishiumiらが一般化BWR状態方程式を用いてmuを相関した時のデータ*にいくつかのデータを加えたものである。

(昭62.3) Peng-Robinson状態方程式の異種分子間相互作用パラメータの相関

Fig.1 Effect of the critical molar volume ratio V_{ci}/V_{ci} on binary interaction parameter mil for a binary system composed of alkane and/or cycloalkane \bigcirc Methane – $(C_2 \sim C_{16})$ alkane, \triangle Ethane – $(C_3 \sim C_{16})$ alkane,

$$\bigcirc$$
 Methane – $(C_2 \sim C_{16})$ alkane, \triangle Ethane – $(C_3 \sim C_{16})$ alkane,

$$\square$$
 Propane – $(C_4 \sim C_{16})$ alkane, ∇ n-Butane – $(C_5 \sim C_{16})$ alkane,

$$\times$$
 n-Pentane – (C₆ ~ C₈) alkane, \oplus n-Hexane-(C₇ ~ C₁₆) alkane,

$$m_{ij} = A + B \left(\frac{V_{ci}}{V_{cj}}\right) + C \left(\frac{V_{ci}}{V_{cj}}\right)^2 \tag{15}$$

$$A = a_1 + a_2 \mid \omega_i - \omega_j \mid \tag{16}$$

$$B = b_1 + b_2 \mid \omega_i - \omega_j \mid \tag{17}$$

その結果,次の定数を用いれば,muの値を平均偏倚0.7%で再現することが見出された。

$$a_1 = 1.041$$
 $a_2 = 0.110$
 $b_1 = -0.0403$
 $b_2 = 0.0367$
 $C = 0.0$

上式によるmijの相関値を用いて、気液平衡を計算した結果をTable 1 に示す。ただし、表中 のメチルシクロヘキサンーシクロヘキサン系は、物性の似た物質同志(臨界温度は、572.10Kと 553.00K)の組み合せなので、計算が困難で偏倚が大きくなった。また、 $Figs. 2 \sim 6$ にメタン -プロパン系,メタン-n-ノナン系,エタン-n-ペンタン系,エタン-n-ヘプタン系,シクロヘキ サン-n-ドデカン系の逆算結果を示す。いずれも臨界点近傍を除けば、良好な計算値を与える。 この相関式は良好に気液平衡を再現することがわかる。一度、相関式を得ると同じグループ内

Table 1 Prediction of vapor-liquid equilibria for the system composed of alkane and/or cycloalkane

System	Temp.	Range	v _{ci} /v _{cj}	ω ₁ -ω ₁	m** ij	Av.dev.*
	(K)	ſ	(-)	(-)	(-)	(-)
Methane - Ethane	133	199	1.495	0.083	0.944	0.005
Methane - Propane	130	338	2.020	0.138	0.985	0.008
Methane - n-Butane	177	410	2.576	0.185	0.975	0.018
Methane - Isobutane	310	377	2.657	0.168	0.969	0.006
Methane - n-Pentane	310	444	3.141	0.243	0.969	0.006
Methane - 2-Methylbutane	344	410	3.111	0.220	0.965	0.021
Methane - Neopentane	298	410	3.061	0.189	0.960	0.015
Methane - n-Hexane	298	423	3.717	0.288	0.962	0.010
Methane - n-Heptane	199	510	4.303	0.343	0.959	0.009
Methane - n-Octane	298	423	4.949	0.387	0.954	0.003
Methane - n-Nonane	223	423	5.485	0.436	0.956	0.007
Methane - 3-Methylpentane	298	373	3.707	0.267	0.957	0.005
Methane - n-Decane	244	510	6.081	0.483	0.957	0.005
Methane - n-Hexadecane	315	475	9.596	0.734	0.994	0.014
Methane - Cyclohexane	294	444	3.111	0.207	0.962	0.007
Methane - Methylcyclohexane	199	338	3.475	0.226	0.954	0.021
Ethane - Propane	255	366	1.351	0.054	0.995	0.009
Ethane - n-Butane	229	403	1.723	0.102	0.989	0.008
Ethane - Isobutane	311	394	1.777	0.084	0.984	0.018
Ethane - n-Pentane	277	444	2.101	0.160	0.986	0.008
Ethane - n-Hexane	338	449	2.486	0.204	0.982	0.026
Ethane - n-Heptane	234	524	2.878	0.259	0.981	
Ethane - n-Octane	273	373	3.311	0.303	0.978	0.008
Ethane - n-Decane	277	510	4.068		0.980	0.005
	277			0.399		0.009
Ethane - n-Dodecane	315	373 475	4.851	0.471	0.981	0.003
Ethane - n-Hexadecane			6.419	0.651	1.007	0.015
Ethane - Cyclohexane	270	553	2.081	0.123	0.980	0.024
Propane - n-Butane	333	423	1.275	0.047	0.997	0.007
Propane - n-Pentane	344	460	1.555	0.105	0.996	0.016
Propane - n-Hexane	373	433	1.840	0.150	0.993	0.022
Propane - n-Heptane	333	533	2.130	0.205	0.994	0.014
Propane - n-Decane	310	510	3.010	0.344	0.996	0.007
Propane - n-Hexadecane	298	318	4.750	0.596	1.019	0.006
n-Butane - n-Pentane	-	298	1.220	0.052	1.001	0.024
n-Butane - n-Hexane	358	493	1.443	0.102	1.000	0.007
n-Butane - n-Heptane	355	538	1.671	0.157	1.001	0.005
n-Butane - n-Decane	310	510	2.361	0.297	1.004	0.010
n-Pentane - n-Heptane	403	526	1.370	0.099	1.002	0.008
n-Pentane - n-Octane	291	433	1.576	0.143	1.001	0.004
n-Pentane - Cyclohexane	309	353	1.010	0.036	1.006	0.009
n-Hexane - n-Heptane	303	323	1.158	0.054	1.003	0.008
n-Hexane - n-Hexadecane	293	333	2.582	0.446	1.028	0.027
n-Hexane - Cyclohexane	343	353	1.195	0.081	1.005	0.016
n-Heptane - Cyclohexane	353	371	1.383	0.136	1.007	0.003
n-Dodecane - Cyclohexane	288	312	2.331	0.347	1.015	0.018
n-Hexadecane - Cyclohexane	298	312	3.084	0.527	1.034	0.016
Methylcyclopentane - Cyclohexane	344	353	1.036	0.025	1.003	0.073

absolute average mole fraction deviation for both liquid and vapor phases. most of the experimental data tested are the same as those used in Nishiumi and Saito

correlated values shown in Eqs. (15)-(17) and Tables 9 and 10.

64 Expt. [K] 223 0 Δ 248 51 273 298 V Pressure [MPa] 323 × 38 348 Φ 373 423 m 26 Calc. 13 0 0.8 0.0 0.2 0.6 0.4 Mole fraction of CH4

Fig.2 Comparison of vapor-liquid equilibrium data for the methane-propane system with predicted values using the mij values in this work.

Fig.3 Comparison of vapor-liquid equilibrium data for the methane-n-nonane system with predicted values using the mij values in this work.

Temperature [K]: \bigcirc 278 \triangle 311 \square 344 \bigcirc 378 \times 411 \bigcirc 444 Solid line: calc.

Fig.5 Comparison of vapor-liquid equilibrium data for the ethane-n-heptane system with predicted values using mu values in this work.

Pressure [MPa]: ○1 △2 □3 ▽4 ×6 ⊕7 △8 □9 Solid line: calc.

Fig. 6 Comparison of vapor-liquid equilibrium data for the cyclohexane-n-dodecane system with predicted values using the mu values in this work

の未知な系のmijを求めることができる。これは(15)式が推算性を持つことを示している。未知な系を構成する成分から観れば、mijを求めることは外挿に相当する。一般に外挿は危険であるが、もっと大きな枠組からは、上式のように内挿となり高い信頼性が期待される。

3.2 アルケンを含む系

Fig. 7 に最適な m_{ij} と V_{ci}/V_{ci} の関係を示す。前節と同様に、(15)式で相関を試み、値を Tables 9、10に記す。この相関式による m_{ij} の再現性は1.9%であった。

逆算結果をTable 2に示す。

Fig. 7 Effect of the critical molar volume ratio V_{ci}/V_{ci} on binary interaction parameter mil for a binary system including alkene

Oethylene-alkane, Apropene-alkane, D1-butene-alkane

System	Temp.Range		v _{ci} /v _{cj}	w _i -w _j	m _{ij}	Av.dev.
	(K))	(-)	(-)	(-)	(-)
Ethylene - Methane	150	190	1.253	0.078	0.977	0.005
Ethylene - Ethane	208	273	1.194	0.005	1.000	0.026
Ethylene - n-Butane	322	388	2.056	0.107	0.965	0.028
Ethylene - n-Heptane	216	516	3.435	0.265	0.941	0.021
Ethylene - n-Decane	283	292	4.855	0.404	0.955	0.011
Ethylene - n-Dodecane	283	348	5.790	0.476	0.981	0.004
Propene - Ethane	260	344	1.223	0.056	0.984	0.008
Propene - Propane	260	360	1.105	0.002	1.002	0.068
Propene - Isobutane	315	397	1.453	0.027	0.991	0.049
Propene - 1-Butene	294	410	1.326	0.039	0.988	0.020
1-Butene - n-Butane	310	410	1.062	0.005	1.002	0.035

Table 2 Prediction of vapor-liquid equilibria for the system including

上表中のプロペン-プロパン系, プロペン-イソプタン系, 1-プテン-n-プタン系は, 性質の似 た物質から成る系で、計算が難しく偏倚が大きい。メタン-エチレン系、エチレン-n-ヘプタン 系,エタン-プロペン系の気液平衡を $Figs.~8\sim10$ に描く。臨界点近傍の計算結果は $,m_{\mu}$ の値に 対し、非常に敏感で、相関値による計算は困難であるが、ほとんどの系で良好な結果を示すこ とがわかる。

Fig.8 Comparison of vapor-liquid equilibrium data for the methane-ethylene system with predicted values using the mij values in this work.

Fig.9 Comparison of vapor-liquid equilibrium data for the ethylene-n-heptane system with predicted values using the mil values in this work.

Fig 10 Comparison of vapor-liquid equilibrium data for the ethane-propene system with predicted values using the mij values in this work

3.3 芳香族炭化水素を含む系

Fig. 11に最適 m_{ij} と V_{ci}/V_{ci} の関係を示す。 m_{ij} を V_{ci}/V_{ci} のみの関数で相関するのは好ましくないので、前節と同様に、(15)式で相関し、その値をTables 9、10に記す。 m_{ij} の再現性は1.1%であった。

逆算結果の一覧をTable 3に掲げる。

Fig. 11 Effect of the critical molar volume ratio V_{ci}/V_{cj} on binary interaction parameter mij for a binary system including aromatic hydrocarbon

Obenzene, △toluene, □m-xylene, ∨p-xylene, ×ethylbenzene

System	Temp.	Range	V _{ci} /V _{cj}	w ₁ -w ₁	m _{ij}	Av.dev.	
	(K)		(-)	(~) ¯	(–)	(-)	
Benzene - Methane	313	501	2.626	0.202	0.974	0.018	
Benzene - Ethane	323	498	1.757	0.119	0.990	0.016	
Benzene - Propane	344	477	1.300	0.064	0.993	0.010	
Benzene - n-Pentane	255	353	1.196	0.041	0.991	0.014	
Benzene - n-Hexane	303	352	1.415	0.085	0.994	0.035	
Benzene - n-Heptane	348	370	1.638	0.140	1.000	0.016	
Benzene - n-Octane	328	398	1.885	0.184	1.002	0.021	
Benzene - Cyclopentane	322	353	1.000	0.017	0.992	0.016	
Benzene - Methylcyclopentane	344	353	1.227	0.029	0.986	0.052	
Benzene - Cyclohexane	350	353	1.185	0.004	0.981	0.038	
Benzene - Toluene	354	553	1.231	0.046	0.991	0.032	
Benzene - p-Xylene	356	402	1.454	0.114	1.001	0.013	
Toluene - Methane	233	553	3.232	0.249	0.959	0.025	
Toluene - Propane	323	402	1.600	0.111	0.994	0.017	
Toluene - n-Pentane	293	313	1.029	0.005	0.987	0.005	
Toluene - n-Hexane	344	376	1.150	0.039	0.992	0.006	
Toluene - n-Heptane	371	382	1.331	0.094	1.000	0.032	
Toluene - n-Octane	384	397	1.531	0.137	1.004	0.012	
Toluene - Cyclohexane	353	384	1.039	0.042	0.997	0.040	
Toluene - Ethylene	283	292	2.581	0.171	0.968	0.014	
m-Xylene - Methane	310	582	3.798	0.323	0.950	0.008	
m-Xylene - Ethylene	223	293	3.032	0.245	0.967	0.009	
p-Xylene - n-Hexane	343	409	1.027	0.028	0.994	0.018	
p-Xylene - n-Heptane	372	409	1.127	0.026	0.989	0.015	
Ethylbenzene - n-Heptane	314	409	1.139	0.049	0.995	0.038	
Ethylbenzene - n-Octane	356	409	1.310	0.093	1.001	0.188	
Ethylbenzene - Ethylene	195	293	3.016	0.215	0.960	0.014	
Ethylbenzene - 1-Octene	394	408	1.241	0.084	1.001	0.133	

Table 3 Prediction of vapor-liquid equilibria for the system including aromatic hydrocarbon

表中で、エチルペンゼン-n-オクタン系、エチルペンゼン-1-オクテン系の計算は、非常に類似した物性のため、偏倚が大きい。

Figs. 12~14にメタン-ベンゼン系、ベンゼン-n-ヘプタン系、メタン-トルエン系の計算結果を示す。ほぼ満足する結果が得られることがわかる。

Fig.12 Comparison of vapor-liquid equilibrium data for the methane-benzene system with predicted values using the mij values in this work.

Fig.13 Comparison of vapor-liquid equilibrium data for the benzene--heptane system with predicted values using the mil values in this work.

Fig.14 Comparison of vapor-liquid equilibrium data for the methane-toluene system with predicted values using the mij values in this work

3.4 (C₁₈~C₂₀)アルカンを含む系

Fig. 15にmijの相関結果を示す。図中の実線が相関式で定数はTables 9,10に記す。

逆算結果をTable 4 に示し、Fig. 16にプロパン-n-エイコサン系の結果を描いた。データが少 なくて、低圧部分しか比較できないが、相関したmijの値を用いれば、高圧部分では実線のよう になることが推算される。

Fig.15. Correlation of binary interaction parameter mij for a binary system including n-octadecane or n-eicosane OC18-alkane, □C18-alkane, △C20-alkane, ∇C20-alkane, ×C20-CO2, —correlated

Fig.16 Comparison of vapor-liquid equilibrium data for the propene-n-eicosane system with predicted values using the mil values in this work.

System	Temp.I	-	V _{ci} /V _{cj} (-)	m _{ij} (-)	Av.dev.
-Octadecane - Methane	308	423	11.111	0.935	0.0009
-Octadecane - Ethane	308	423	7.432	1.039	0.0006
-Octadecane - Propane	308	423	5.500	1.037	0.0008
-Octadecane - Ethylene	308	423	8.871	1.015	0.0008
-Octadecane - Propene	308	423	6.077	1.042	0.001
-Eicosane - Methane	313	413	12.121	0.882	0.009
-Eicosane - Ethane	323	413	8.108	1.030	0.018
-Eicosane - Propane	323	413	6.000	1.041	0.0003
-Eicosane - Ethylene	323	413	9.677	0.992	0.0009
-Eicosane - Propene	323	413	6.630	1.043	0.001
-Eicosane - Carbon dioxide	323	373	12.766	0.842	0.013

Table 4 Prediction of vapor-liquid equilibria for the system including (C₁₈~C₂₀) alkane

3.5 CO₂を含む系

Fig. 17に相関結果から、 CO_2 -($C_1 \sim C_{16}$)アルカン系、-シクロアルカン系のグループと、 CO_2 --アルケン系、-芳香族炭化水素のグループと2つに分けて相関した。それぞれの相関式の定数 は, Tables 9, 10に示す。

逆算結果をTable 5にまとめた。

Fig. 18にCO₂-n-ブタン系の結果を示した。広範囲にわたって気液平衡データを良好に表わ すことがわかる。

Fig.17 Correlation of binary interaction parameter mis for a binary system including carbon dioxide.

OCO2-alkane, △CO2-cycloalkane, ∇CO2 -aromatic hydrocarbon, --- correlated

Comparison of vapor-liquid equilibrium Fig.18 data for the carbon dioxide-n-butane system with predicted values using the mij values in this work.

Temperature[℃]: ○38 △71 □104 ▽138 ---calc

3.404

0.919

0.014

System	Temp.	Range	v _{ci} /v _{cj}	m _{ij}	Av.dev.
	(K)) 	(-)	(-)	(-)
Carbon dioxide - Methane	199	283	1.053	0.886	0.023
Carbon dioxide - Ethane	222	288	1.574	0.887	0.037
Carbon dioxide - Propane	233	344	2.128	0.889	0.015
Carbon dioxide - n-Butane	273	410	2.713	0.890	0.009
Carbon dioxide - Isobutane	273	394	2.798	0.890	0.013
Carbon dioxide - n-Pentane	277	467	3.309	0.891	0.022
Carbon dioxide - 3-Methylbutane	277	377	3.277	0.891	0.008
Carbon dioxide - n-Octane	313	393	5.213	0.896	0.021
Carbon dioxide - n-Decane	277	510	6.404	0.899	0.013
Carbon dioxide - n-Tridecane	313	333	8.298	0.903	0.051
Carbon dioxide - n-Hexadecane	298	353	10.106	0.907	0.025
Carbon dioxide - Cyclohexane	473	533	3.277	0.891	0.011
Carbon dioxide - Ethylene	231	253	1.319	0.937	0.076
Carbon dioxide - Propene	229	309	1.926	0.932	0.018
Carbon dioxide - 1-Butene	-	273	2.553	0.927	0.011
Carbon dioxide - Benzene	303	333	2.766	0.925	0.012
- 1 1: . 1 - 1	244				

Table 5 Prediction of vapor-liquid equilibria for the system including carbon dioxide

3.6 N₂を含む系

Carbon dioxide - Toluene

Fig. 19に相関結果を示し、相関式の定数はTables 9,10に示す。Table 6の逆算結果から、この相関値を用いれば良好な計算結果を得ることがわかる。

Fig.19 Correlation of binary interaction parameter mij for a binary system including nitrogen

 $\bigcirc N_2$ -alkane, $\triangle N_2$ -alkene, ---- correlated

System	Temp.	Range	v _{ci} /v _{cj}	m ij	Av.dev.
	(K	:)	(-)	(-)	(-)
Nitrogen - Methane	90	183	1.099	0.956	0.011
Nitrogen - Ethane	119	289	1.643	0.942	0.022
Nitrogen - Propane	119	353	2,220	0.929	0.015
Nitrogen - n-Butane	310	410	2.830	0.914	0.023
Nitrogen - Isobutane	255	394	2.919	0.912	0.013
Nitrogen - n-Pentane	277	377	3.452	0.899	0.006
Nitrogen - 2-Methylbutane	277	377	3.418	0.900	0.008
Nitrogen - n-Hexane	310	444	4.084	0.883	0.022
Nitrogen - n-Heptane	305	455	4.728	0.868	0.015
Nitrogen - 2,2,4-Trimethylpentane	376	452	5.194	0.857	0.022
Nitrogen - n-Decane	310	411	6.681	0.821	0.008
Nitrogen - Ethylene	200	260	1.376	0.949	0.014
Nitrogen - Propene	260	290	2.009	0.934	0.019
Nitrogen - Benzene	348	398	2.886	0.912	0.011
Nitrogen - Carbon dioxide	218	303	1.043	1.016	0.010

Table 6 Prediction of vapor-liquid equilibria for the system including nitrogen

Figs. 20~21にN₂-CO₂系, N₂-エタン系の結果を示す。N₂-エタン系は, 2成分の臨界温度の 差が大きいので、臨界点近傍で圧力の変化が少なく、推算が困難であるが、それ以外では結果 は良好である。

Fig.20 Comparison of vapor-liquid equilibrium data for the nitrogen-carbon dioxide system with predicted values using the mij values in this work.

Fig.21 Comparison of vapor-liquid equilibrium data for the nitrogen-ethane system with predicted values using the mil values in this work.

3.7 H₂Sを含む系

Fig. 22に相関結果, 相関式の定数をTables 9,10に示す。

逆算結果をTable 7に示した。また、Fig. 23に H_2S -n-ペンタン系の結果を示した。髙温髙圧では、結果が好ましくなかった。しかし、ほとんどの系で、良好な計算結果を与える。

Fig.22 Correlation of binary interaction parameter mij for a binary system including hydrogen sulfide.

OH2S-alkane, \triangle H2S-alkene, ——correlated

Fig.23 Comparison of vapor-liquid equilibrium data for hydrogen sulfide-n-pentane system with predicted values using the m_{ij} values in this work.

Table 7 Prediction of vapor-liquid equilibria for the system including hydrogen sulfide

System		Temp.1	-	v _{ci} /v _{cj}	^m ij	Av.dev.
		(K))	(-)	(-)	(~)
Hydrogen sul:	fide - Methane	277	344	1.013	0.919	0.009
Hydrogen sul:	fide - Ethane	278	357	1.515	0.924	0.024
Hydrogen suli	Fide - Propane	243	366	2.047	0.930	0.077
Hydrogen sul:	fide - n-Butane	324	408	2.610	0.936	0.019
Hydrogen sul:	Fide - Isobutane	277	377	2.692	0.937	0.030
Hydrogen sul:	fide - n-Pentane	277	444	3.183	0.942	0.013
Hydrogen sul:	fide - n-Decane	277	444	6.162	0.975	0.011
Hydrogen sul:	fide - Propene	243	288	1.853	0.927	0.053
Hydrogen sul:	fide - Toluene	265	293	3.275	1.016	0.008
Hydrogen sul:	fide - o-Xylene	265	293	3.777	1.016	0.003
Hydrogen sul:	fide - Carbon diox	ide 221	353	1.039	0.894	0.020
Hydrogen sul:	Fide - Nitrogen	256	344	1.084	0.848	0.006

3.8 アセチレンを含む系

アセチレン-アルカン系、- 芳香族炭化水素系の m_{ij} を定数として相関した(Fig. 24)。また、アセチレン-アルケン系は、データが少ないが、ここではTables 9、10の値を用いた。

逆算結果をTable 8に示す。

Fig. 25にアセチレン-ヘキサン系の結果を示す。良好な結果を示していることがわかる。

Fig.24 Correlation of binay interacion parameter m_{ii} for a binary system including acetylene.

Oacetylene-alkane, \(\triangle acetylene-aromatic \) hydrocarbon, \(\triangle -correlated \)

Fig.25 Comparison of vapor-liquid equilibrium data for the acetylene-n-hexane system with predicted values using the mij values in this work.

Table 8 Prediction of vapor-liquid equilibria for the system including acetylene

System	Temp.	Range	v _{ci} /v _{cj}	m ij	Av.dev.
	(K)	(~)	(-)	(-)
Acetylene - Ethane	277	288	1.310	0.855	0.024
Acetylene - Propane	279	367	1.770	0.855	0.023
Acetylene - n-Hexane	253	263	3.257	0.855	0.025
Acetylene - n-Octane	253	273	4.336	0.855	0.011
Acetylene - Ethylene	235	288	1.097	0.933	0.046
Acetylene - Propene	303	333	1.602	0.861	0.051
Acetylene - Benzene	283	313	2,301	0.965	0.017
Acetylene - Toluene	253	273	2.832	0.965	0.010
Acetylene - m-Xylene	253	283	3.327	0.965	0.016

Table 9 Group number in Table10 of binary interaction parameter, mij in this work

	C1-C16 Alkane	Cyclo- alkane	Alkene	Aromatic Hydrocarbon	C ₁₈ -C ₂₀ Alkane	CO ₂	N ₂	H ₂ S	Acetylene
C _{1-C16} Alkane	1	1	2	3	4	5	7	8	10
Cycloalkane	1	1	-	3	-	5	-	-	-
Alkene	2	-	2	3	4	6	7	8	9
Aromatic Hydrocarbon	3	3	3	3	-	6	7	12	11
C ₁₈ -C ₂₀ Alkane	4	-	4	-	-	4	-	_	-
CO ₂	5	5	6	6	4	-	12	13	-
N ₂	7	-	7	7	-	12	_	14	-
H ₂ S	8	_	8	12	-	13	14	-	-
Acetylene	10	-	9	11	-	-	-	-	-

Table 10 Correlated coefficients of mij in Eqs (15) to (17)

Group number*		4	В		С
	<i>a</i> ₁	a ₂	<i>b</i> ₁	b_2	
1	1.041	0.11	-0.0403	0.0367	0
2	1.017	-0.417	-0.0124	0.0852	0
3	1.025	0.317	-0.0385	-0.0258	0
4	0.823	0	0.0673	0	-0.0051
5	0.883	0	0.0023	0	0
6	0.948	0	-0.0084	0	0
7	0.982	0	-0.0241	0	0
8	0.907	0	0.0109	0	0
9	1.090	0	-0.1435	0	0
10	0.855	0	o	0	o
11	0.965	0	0	0	0
12	1.016	0	0	0	0
13	0.894	0	0	0	0
14	0.848	0	0	0	0

Groups are shown in Table 9 for the same number.

3.9 多成分系気液平衡計算

混合則(12)式からわかるように、2成分系間の m_{ii} がTables 9,10より求められると3成分 系以上の混合物の物性も計算できる。

Figs. 26, 27にメタン-エタン-プロパン系の50Fにおける600, 1000psiaでの温度と液組成を固 定し、圧力と気相組成を求めた時の気液平衡計算結果を示す。

Figs. 28, 29に同様に、メタン-n-ブタン-CO₂系の37.8°Cにおける81.60, 27.20atmでの気液 平衡計算結果を示す。

多成分系気液平衡計算も臨界点近傍まで、良好な結果を示すことがわかる。

Fig.26 Comparison of vapor-liquid equilibrium data for the methane-ethane-propane system at 50 °F and 600 psia 6) with predicted values using the mij values in this work.

Fig.27 Comparison of vapor-liquid equilibrium data for the methane-ethane-propane system at 50°F and 1100 psia6) with predicted values using the mij values in this work.

Fig.28 Comparison of vapor-liquid equilibrium data for the methane-n-butane-carbon dioxide system at 37.8°C and 81.6 atm7) with predicted values using the mij values in this work.

Fig.29 Comparison of vapor-liquid equilibriium data the methane-n-butane-carbon dioxide system at 37.8°C and 27.2 atm7) with predicted values using the mij values in this work.

3.10 第2ビリアル係数

Hudson-McCoubreyの理論は、混合物の第2ビリアル係数〔(7)式〕と組み合せてなりたっている²)。したがって純物質の第2ビリアル係数が正確に表現されていなくてはならない。

一般化BWR状態方程式とPeng-Robinson状態方程式による第2ビリアル係数の計算結果をFigs. 30, 31で比較した。メタン, CO₂ともに一般化BWR式は第2ビリアル係数を良好に表わすが, Peng-Robinson式では偏倚が大きいことがわかる。これから, Peng-Robinson式へのm₁, の適用性がくずれ, 経験的なものにならざるを得ないことがわかる。

Fig.30 Comparison of second virial coefficient data for methane⁸⁾ with the results obtained by the generalized BWR and Peng-Robinson equation of state.

Fig.31 Comparison of the second virial coefficient data for carbon dioxide⁹⁾ with the results obtained by the generalized BWR and Peng-Robinson equation of state.

§ 4. 結 言

以上から、炭化水素、二酸化炭素、窒素などの無極性物質および H_2 Sから成る系のPeng-Robinson状態式の m_H が、 $Eqs.(15) \sim (17)$ で相関され、式の係数はTables 9,10に示された。逆算結果は、BWR状態式と比べて遜色はなく、これによって未知の無極性物質から成る系の気液平衡の推算を行うことができる。

謝辞·

本研究を行うにあたり、計算あるいは論文作成に労を惜しまず協力をしてくれた河村光費君に深く感謝します。

Nomenclature

P: pressure [atm]

 $R: gas constant = 0.082056 [1 atm mol^{-1} K^{-1}]$

T: temperature [K]

 V_c : critical molar volume [1 mol⁻¹]

v: molar volume [1 mol⁻¹]

 ω : acentric factor [-]

Subscripts

c: critical property

r: reduced property

引 用 文 献

- 1) Arai, T. and H. Nishiumi: Bulletin of the College of Engineering, Hosei University, 22, 19(1986).
- 2) Hudson, G.H. and J.C.McCoubrey: Trans. Faraday Soc., 56, 761 (1960)
- 3) Peng, D.Y. and D.B. Robinson: Ind. Eng. Chem. Fundam., 15, 59(1976).
- 4) Nishiumi, H. and S.Saito: J.Chem. Eng. Japan, 10(3)176(1977).
- 5) Reed, T.M., III: J.Phys. Chem., 59, 425 (1955).
- 6) Price, A.R. and R.Kobayashi: J.Chem. Eng. Data, 4, 40(1959).
- 7) Wang, R.H. and McKetta, J.J.: J.Chem. Eng Data, 9, 30(1964).
- 8) Dymond, J.H.: Fluid Phase Equilibria, 27, 1(1986).
- 9) Dymond, J.H. and E.B.Smith: "The Virial Coefficients of Pure Gases and Mixtures", p.53, Oxford University Press (1980).