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A Study of Estimating Thermal Environmental Conditions
In Urban Area
From Multi-Temporal and Spatial Informations

Tetsurou UCHIDA* and Taichi OSHIMA**

Abstract

Satellite Remote sensing technology using Satellite acquires wide pictures on same area of the
earth surface during short peried of time. But, the data collected from satellite are affected by
atmospheric conditions. The conventional method is necessary the ground truth and air plane data
to analyze the temporal thermal data. The thermal characteristics of ground surface is obtained by
thermal inertia.

But as a matter of fact, temporal good thermal images are difficult to obtain for being change-
able in weather conditions and to get the data only one time a day from satellite. This study airms at
investigating the thermal characteristics by temporal and thermal characteristics which have been
obtained by texture analysis of thermal images using spatial filter.

Result of texture analysis shows to have been obtained good correlation between thermal char-
acteristics in temporal and spatial.
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1. Introduction

At present, cities are facing with crucial problems such as population centralization and green
decreasing.
As the protection voice keeping nature in our society is rising up, remote sensing data are
expected to play the key role of sending constantly the significant urban thermal informations being
available from wide area and taking advantage of monitoring temporal change for the same areas of

earth surface.

However, remote sensing data with multi-temporal informations are not always available for
the changeable weather conditions.

Therefore, the thermal environmental monitoring has been performed using the limited data
available from remote sensing.

But, it's seldom to obtain the good quality temporal data in normal case. Then, data from air-
plane and low resolution satellite data are used instead.

LANDSAT ,MOS - 1 data are acquired each 16 days for the same area and have the high reso-
lution of 30 to 50m. and it is the most appropriate to catch up the city thermal conditions, but
temporal resolving power is low.

Meteorological satellite - NOAA:AVHRR(Advance Very High Resolution Radiometer) has
high temporal resolving power and acquire the data 2 times a day, but the spatial resolving power is
very low, about 1km.

Therefdre itis difficult to extract urban thermal factors for analysis. This study airms at compar-
ing and surveying the thermal data extracted from the multi-temporal images and the thermal im-
ages of one definite time and experimentally are discussed the relationship between them.

Result of the texture analysis shows that the good correlations have been obtained from urban
thermal environmental informations in temporal and spatial and texture analysis generated noise
and the noise elimination was performed using RANG —FILTER and LAPLACIAN —FILTER for
the analyzed images and finally discussed on problems of binary transformation.

The result has concluded to be able to estimate the extraction methods for environmental infor-

mations by knowing the correlation between temporal and spatial thermal environmental informa-
tions under the condition of gaining the texture algorithm.
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2 . Study Process

This study at first examined the texture algorithm closely related to the urban thermal informa-
tions from points of temporal and spatial.

Then, this study investigated relation between areas of the same or different behaviors in both
land cover and land use. Fig. 1 illustrates the flow chart of study.

The original images of data have been normalized and calibrated between different band (See A
part in Fig, 1).

The multi-temporal and the spatial informations thermal environment from calibrated image
(See B part in Fig.1).

But, the noise generated in images of texture and was removed using RANG —FILTER and
LAPLACIAN —FILTER (See C part in Fig.1).

Mutual analysis between multi-temporal and spatial informations in thermal environment, was
performed by regression analysis (See D part in Fig.1).

Result of texture analysis shows to have been obtained good correlation between multi-tempo-
ral and spatial informations of thermal environment.

The most effective parameters for thermal environmental analysis in urban area can be obtained
from the quantity of extracted texture and the authors have proposed to be able to observe the

thermal environmental factors using remote sensing techniques in temporal and spatial (See E part
in Fig. 1).
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Fig. 1 FLOW of STUDY

3. Study Area and Data

This study has analyzed the data of Band —6/TM of LANDSAT — 5. From the band 1,2,3,4 and
5 produced the analysis supported images which consist of colors-composite, vegetation and water
area images.

The test site was selected the built-up area of TOKYO, where are densely populated and rela-
tively devastated green area.

Remote sensing is an effective way to survey urban environmental analysis and authors have
verified its usefulness, that means the application example mentioned here are now in developing
stages but still by continuing the more renewable algolism, can be speeded up the process opera-
tions and gained the more better qualitative result.

Fig 2 and Fig 3 are the attribute of satellite images and the image 1,2,3,4 show the vegitation,
water area, thermal and false color images.
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BAND 1 0.45-0.52(30) PATHEROV 107535
BAND 2 0.52-0.60(30) I o1
ORBIT Sun-Synchronows Orbit
BAND 3 0.63-0.69(30) ALTITUE 705km
BAND 4 — -
0.76-0.90(30) ORBITAL PRIOO 1 6Day
BLND 5 1.55-1.75(30) SENSOR Thematic Mapper
VISIBLE/N. IR 4Band
BAND 6 ~10.4-12.5(120) s i
THERNAL. 1R 1Band
Fig. 2 WAVELENGTH: S RESOLYVING 30m (VISIBLE/N.IR/IR)
(Resolving Power:m) s 1508 R R/
SWATH VIDTH 1B5km

- -3? e =
Image

Image. 2 WATER IMAGE

Fig. 3 LANDSAT/TM

"

Image. 3 THERMAL IMAGE

Image. 4 FALSE COLOR IMAGE

4 . Image Parameter and Data Calibration

1  Measurement of Image Parameters

5

Each image of thermatic mapper consists of 8 bits per one and describes as the digital number
from 0 to 255, LANDSAT/TM has resolving power of 120m in thermal band and records the aver-
age radiance in 120m? This study covers the area of 400 x 512 pixels, that are equivalent to 204800

pixels.
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Then, the radiance values are measured on the images and the radiance distribution is calculated
for the extration of image parameters such as standard deviation, average, max. and min, values.

‘The difference of max. and min. values is called as dynamic range and also calculated from the
radiance values mention above.
Dynamic range in thermal band of LANDSAT/TM is narrower than dynamic rang of other
sensors, because of flight altitude of LANDSAT, that means, I.LF.O.V.(Instantaneous Field of
View) of the sonsors becomes more wider,

LANDSAT on low altitude needs to scan faster than other satellites, as the faster scanning

doesn't give enough reflection and radiance energy.

Infrared radiance has the same problem of being narrow dynamic rang as other satellites. The

image signal of infrared radiation records the strength radiance energy, then it doesn't need the sun

source because the radiance energy of subject itself is measured.
That is the reason why band 6 is narrower than other band 1,2,3,4,5 and 7 in LANDSAT/TM

and resolving power of band 6 is lower than other bands.

The Table 1,2,3 and 4 show the measured result of image parameters.

Table. 1 IMAGE PARAMETER
on '85 23 JAN

Table. 3 IMAGE PARAMETER
on '87 24 JUL

88" 323. JAN

87' 24, JUL

CH) CH2 CHS3 CHa CHE CHS CH1 CH2 CHS CH4 CHB CHS
CC Tac 200880 | 104800 04000 1204800 | 204000 | 304800 CCTom 304000 | 204080 204800 | 04000 | 204000 | 204880
CC Taln n 18 18 & $ " CCTaln 1 1] 1" 5 [] 19%
CCTanx 108 " 1] 10 155 " CCTanz i1} 1113 s e 11} 160
CCTang "4 nn 1.3 123.87 2.7 0.0 CCTavg 1.3 ana 4.9 o9 40,08 | 15238
CCTetd nu 1.4 n.” 18.90 0.3 "nu CCTstd 11e.21 40n.08 §0.60 L (1% ] a.6
CCTdm k1 [} [ [1] 150 § CCTdn 18 16 100 1% 38 2
Table. 2 IMAGE PARAMETER Table. IMAGE PARAMETER
b}
on 87 21 MAY on '87 9 OCT
87" 21. MAY 871" 9. oCT
CH1 cH?2 CHS CH4 CHB CHe CH} CH2 CHY CH4 CHS CHE
CCTrn 04000 | 200000 3048800 | 204800 | 208800 | 284000 CCTams 04000 | 204800 304800 | 204008 | 200880 | 204300
CCTala [1 ] 0 10 0 130 CCTaln 1] 18 1 (] (] 128
CCTa P11 14 108 230 F113 I3 CC Tax 115 110 150 e 10 158
CCTavg 135. 78 4.3 5L 80 S .51 | 1801 CCTwm in.46 80.10 nu 30.08 4229 | MLY%
CCTatd 13828 0.8 (3R]} IR ]] ne T8} CCTad .82 n.ol 1511 $1.¢ 3.4 1.8
CCTdn 10 e s 20 i1} ] CCTdn 170 118 1% $o 1] 30
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4.2 Data Calibration using Normalized Equation

As mentioned above, images have the dynamic rangs which are changeable in certain limit.
When multi - temporal images compare and analyze, the operation of image scaling is performed

S0 as to being the same level in image process.
(1)  Concept of Image Scaling

On the image is measured the range width with being the difference of max. and min. CCT
count which is called as dynamic range.

The dynamic rang of multi —temporal images show the seasonal difference and the level of
thermal distribution. The dynamic range of one single season is unified within the seasonal band.
Here shows one example, there are two images, I MG 1 (u,v)and IMG 2 (u,v)with DYN 1
is unitedin IMG 2 (u,v)with DYN 2.

The selecting conditons for I M G 1 (u,v) are as follows:

Condition 1
Being CC T dynwith IMG1>CC T dynwith IMG 2

Condition 2
Being CCT stdwith IMG 1 >CC Tstdwith I MG 2
C C T sud is standard deviation in images.

Conditon 3

Histogram of images presupposes is Gaussian distribution.

Condition 4
Correlation coefficient between thermal image
and ground truth data is high.

In the first place, original image is done regression analysis as explaining variable the I MG 2
and as unexplaining varible the IMG 1.

Then, normal equation(1) of the regression and correlation coefficient is as follows:

IMG1=IMG2-a+b 1)

correlation coefficient r

7 .
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The ain equation (1) is called as the inclined scaling factor and b independent factor that means
distance from the origin to the axis .

Anewimage IMG 2’ is acquired by putting equation (2) into I MG 2.
IMG2’ =IMG2-a+b V)]

This IMG 2’ is called as the scaling image. In order to verify the I MG 2’ | correlation
between I MG 1 and IMG?' is calculated using equation(3).

IMG1=IMG2’ -a’ +b’ (3

correlation coefficient r'

If this result is satisfied with the following verification items, this scaling is judged to be effec-

tive.
The verification condition:

Condition 1
Being r'>r

r':correlation coefficientof IMG 1 and I M G 2°
r :correlation coefficientof I MG 1 and IMG 2

Condition 2

a' is closer to 1 than a.

a":inclination in normal equationof I MG 1 and I MG 2’
a :inclination in normal equationof IMG 1 and IMG 2

Condition 3

Histogram of I MG 2’ is more similar to Gaussian distribution
than Histogramof I MG 1.
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(2)  Selection of calibration image

The data on July 24, 1987 were used for this study, the reason is clear as mentioned before.
At first the analysis is performed using the main images, the regression analysis are performed

between this main image and other three images, which given the calibration parameter with other
three images that are calibrated.

Table 5 shows the result and Fig. 4 to 6 are the correlation figure.

e e o

. '87

y:24 JUL. '87
y¥:24 JUL

x:23 JAN. 85
Fig. 4 CORRELATION FIGURE

x:21 MAY. "87
Fig. 5 CORRELATION FIGURE

y:24 JUL. '87

x:9 OCT. "89
Fig. 6 CORRELATION FIGURE

Table. 5 REGRESSION FORMULA and
CORRELATION COEFFICIENT

before CALIBRATION
Y:87 24, JUL

REGRESSION FORMULA CORRELATION

CIEPFICIENT
X: 85’ 23, JAN ¥= -0.149X+165.881 -0.088
X: 87" 21. MAY Y= 0.566X+68.632 0.932
X:86" 9,0CT ¥= 0.854X+59.611 0.752
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The calculated inclined and independent factors are multiplied and added to the original images.
There are shown from equation (4) to (6).

CCT1’ =—-0149*CCT 1 +165.881 (4)
CCT5’ = 0566*CCT5 +66.632 (5)
CCTI10 = 0.654*CCT10+59.611 (6)

CCT 1’ :imageon January 23 after the calibration
CCT1 : original data on January 23

CCTS5’ :imageonMay 21 after calibration
CCTS5 ! original data on May 21

CCTI10’ :image on October 9 after calibration
CCTI10 : original data on October 9

Table 6 shows the result for verification, of the images suchas CCT 1’ ,CCT5’ and
CCTi10 .

Table. 6 REGRESSION FORMULA and
CORRELATION COEFFICIENT
after CALIBRATION

Y:87' 24. JUL

REGRESSION FORMULA CORRELATION

COEFRICIENT
X:85" 23. JAN Y= -0.080X+166.561 -0.089
X:87" 21, MAY Y= 0.085X+22.947 0.950
X:86" 8.0CT Y= 0.888X+0.569 0.820

5. Extraction of informations using texture analysis

Texture consist of 4 types which each define 5 x 5 size, 2 types are temporal informations, but

other 2 are spatial informations.

5.1 Extraction of temporal informations
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1) Method of Correlation Coefficient

Texture of correlation is imaged the correlation coefficient in partial spatial filter on temporal
thermal images. The Fig 7 shows the flow chart. Equation (7) described the processing formula and
Image 5 is the result of calcutaion.

Dﬁma‘l’l Dtima‘m

thermal image thermal image

— —

L O

caleulate correlation coafficient
t

texture images

of correlation

CORRELATION COEFFICIENT

Fig. 7 TEXTURE IMAGE of
CORRELATION COEFFICIENT

v-2 v-2

I Z{ (Xij—Xavg(u,v)) (Yij—Yavg(u,v)) )

jmv+2 Jmved

J{T T{(Xij—Xave(,v) I3V {E T{ (Yij— Yavg(u,v))’ }

jave+d jurel j=vi2 jmvi2

cor(u,v)=

IMGcor=cor(u,v)-G+OF (D

Xij: CCT count of time T 1 period in filter

X avg(u,v): average CCT count of T1 period in filter

Y ij: CCT count of time T 2 period in filter

Y avg(u,v): average CCT count of time T 2 period in filter
cor{u,v): correlation coefficient in filter

G gain factor

O F': offset factor

I M Gcor: texture image of correlation coefficient
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2) method of Max. —Min.

The texture of max. —min. is imaged the result of subtraction works—to subtract min. CCT
from max. CCT in filter —, next the texture image is imaged the result of subtracting certain time
images from subtraction of another time image.

Fig 8. shows the flow chart, computed formula shows in equation(8), result of calculation

shows in image 6.

time T1 timo T2
Dtherml image Dﬂmrmal image

i

1
calculate max—min D

. infilter ,

time T1 time T2
maz—min D max—min
image ‘ image

[

Image. 6 TEXTURE of

aleulats subtraction MAX.—MIN.
—

texture images

of max—min

Fig. 8 TEXTURE IMAGE of

MAX.—MIN.
Xmax(uv)=ma x(X 1, X2, - X25)
Xmin(uv)=mi n(X1l, X2, - X25)
Ymax(uyv)=ma x(Y 1, Y2, - Y 25)
Ymin@@v)=min(Y1l, Y2, < Y 25)

dTT1=Xmax(u,v)— Xmin(u,v), dTT2=Ymax(uyv)—Y min(u,v)

IMGrag=ABS (dTTi1—dTT2) - G—OF ()

X max(u,v) . max CCT count of time T 1 period in filter
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X min(u,v) ; min CCT count of time T 1 period in filter

Y max(u,v) : max CCT count of time T 2 pericd in filter

Y min(u,v) : min CCT count of time T 2 period in filter

d TT1: substraction of time T 1 period between max CCT
and min CCT in filter

d TT2: substraction of time T 2 period between max CCT
and min CCT in filter

G : gain factor

O F : offset factor

I M Grag : texture image of max - mix

5.2 Extraction of Spatial Information

1 )Method of Standard Deviation

Texture of standard deviation is imaged standard deviation in spatial filter of thermal image of
one period.

Fig 9 shows the flow chart, computed formula shows equation (9) and result of calcultaion
shows in image 7.

D timo T1(or T2)
thermal imaga

calculate
standerd deviation

D texture image Image. 7 TEXTURE of
of standard STANDARD DEVIATION

doviation

Fig. 9 TEXTURE IMAGE of
STANDARD DEVIATION
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Xstd=./'{"£ T{ (Xij—Xavg(u,v)) * }

wy+l jmed?

IMGstd=Xstd- G+OF (9)

Xij ! CCT count of time T 1 period in filter

Xavg(u,v) . average CCT count of time T 1 period in filter
G : gain factor

OF : offset factor

I MGstd : texture image of standerd deviation

2) Method of Range Subtraction

Texture of range subtraction is imaged as subtraction of max CCT and min CCT in same period
images.

Fig 10. shows the flow chart, computed formula shows in quation (10), result of calculation
shows in image 8.

time Tl(or T2)

therma! image

caleulate max~min
of dypamic range
in filter

Dthum image of
rango subtraction

RANGE SUBTRACTION

Fig. 10 TEXTURE IMAGE of
RANGE SUBTRACTION
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d TT1= Xmax(u,v)— Xmin(u,v)
IMGsub=d TT1- G+OF (10)

Xmax(u,v) : max CCT of one period in filter

X min(u,v) : min CCT of one period in filter

d TT1 : dynamic range

G : gain factor

OF : offset factor

I MGsub : texture image of Range subtraction
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6 . Noise remove

6.1 Necessity of noise Remove

Texwre images bring noise generation when texture is computed by spatial filtering method.

Filter used in texture analysis enhances quantity of texture when it passes different land covers.

Enhanced texture, it's places where consist of a variety land core, i. e, differential land cover
areas shows a thermal fault. This phenomena appear remarkably on texture images which are based
upon the correlation coefficient. Because the places where dynamic range is wide, show high value
in correlation coefficient, but the places where dynamic range is narrow, show low value.

The Fig 11 and 12 show concept mentioned above. Fig 11 shows the distribution of uniform
land cover, but Fig 12 for being not uniform.

The correlation coefficient shows high by placing a filter on the land cover being not uniform.
The noise are removed by edge enhanced thermal images.

Full color edge enhanced images are transformed into binary image data. The threshold is deter-
minated by distinctive method of histogram.

In the end, noise of texture images of correlation coefficient are removed by binary edge en-
hanced images.

In this study, two methods are presented with LAPLACIAN —FILTER and RANG —FILTER
and finally The RANG —FILTER is suggested in this study.

Fig. 11 WIDE DYNAMIC RANGE Fig. 12 NARROW DYNAMIC RANGE
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6.2 Noise Remove by LAPLACIAN-FILTER

The LAPLACIAN - FILTER is one of industrial image processing for image enhancement.

The enhanced image process is called as image differential operation too and is used mainly for
extracting the characteristic feature in image processing using pattern recognition. This method is
performed by laplacian filtering for the area defined 8 pixel including its surrounding.

Laplacian filter show as Fig 13. The enhanced images of full color edge show in equation (11)

and equation (12) with binary edge.
rl 1 1

1 -8 1

1 1 1
| A
Fig. 13 LAPLACIAN FILTER

1p

I1MGEgde =V 1MGorg (11)

ip 1
I MGecor=I MGecor— 1 MGEgde (12)

ip
I MGEgde: Full color edge enhanced image removed by laplacian

V’ :laplacian

I MGorg :thermal original image
I MGorg :texture image of coefficient

1p
I MGorg : Images removed noise from
texture of correlation coefficient
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6.3 Noise Remove by RANGE-FILTER

Normally the Laplacian filter is popularly used for process the edge enhancemant, but not al-
ways suitable for the industrial image processing.

Then, this study has surveied about availability of edge remove with RANGE—FILTER. The
LAPLACIAN—FILTER has the adaptability for anything except thermal fault.

Therefore, if informations inside filter are clear for the edge enhancement, Laplacian Filter can
be used with flexibility.

However, RANGE —FILTER tends strongly to enhance edges. The area of enhanced edge in
the image are larger.

Then, the method of LAPLACIAN - FILTER and RANG —FILTER have good and bad points

as noise remove method.

This study reported on RANGE —FILTER method because this study aims at examining tex-
ture algorism too.

The edge of RANGE —FILTER defines as equation (13) and equation (14) shows the process-
ing formula of noise remove.

Xmax(u,v)=m a x (X1, X2, <+ X25)
Xmin(u,v)=m i n(X1, X2, - X25)
g

I MGEdge= (Xmax(u,v)— Xmin(u,v)) *G+OF (13)

mg mg
IMGcor=1MGcor— I MGEdge (14)

Xmax(u,v) : max CCT count value in partial filter

Xmin(u,v) . min CCT count value in partial filter

I M GEdge : edge enhanced images by RANGE - FILTER
mg

I M Gceor : noise removed image from temporal thermal

texture images using correlation coefficient
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G : gain factor
O F | offset factor

7 . Integrated Analysis of Multi-temporal and Spatial Informations

7.1 Image Analysis
As mentioned above, multi-temporal informations are extracted by two algorism and spatial
informations are extracted by two another algorism too.

The noise remove were performed on texture images using correlation coefficient.

The texture of multi-temporal and spatial are calculated by two algorisms, each extracted infor-
mations were different.

As the first priority, the analysis of temporal and spatial thermal texture were performed.

When texture images compare and analyze the image analysis in this study intends to interpret
from the images the differences between texture of multi-temporal and spatial.

Subtractive equation shows as equation(15) which calcurates absolute subtraction. This equa-
tion means that if CCT count value of I M G sub converges to near zero, then the values surround-
ing zero's area are difficult to be change for the thermal texture that means the higher the CCT
count values is, the more changeable.

Subtractive images are shown on from image 9 to image 11 in which the characteristics of

image can be seen clearly.

1 PR v

Image. 9 SUBTRACTIVE IMAG Image.10 SUBTRACTIVE IMAGE

B
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S N

image.11 SUBTRACTIVE IMAGE

IMGsub=ABS (IMGT—-IMGS) Q5

I M Gsub : Subtractive image
I MGT : Mulii —temporal image
I MGS : Spatial information image

7.2 Regression Analysis

To verify the regression analysis, image was analyzed using equation (16) and correlation coef-
ficient was calculated.

Table 7 to Table 12 show correlation coefficient, texture images of correlation coefficient were
used as the inducing variable and texture images of standard deviation and range subtraction were
used as the object variable.

Table 13 to Table 18 show correlation coefficient, texture image of max. —min. were used as

the inducing variable and texture image of standerd deviation and range subtraction were used as
the object variable.
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Teble 7 CORRELATION between
MULTI-TEMPORAL and SPATIAL

Table 8 CORRELATION between
MULTI-TEMPORAL and SPATIAL

MULTI—~TEMPORAL AND SPATIAL

COBRELATION

MULTI—TEMPORAL AND SPATIAL

CORRELATION
1/28 §/21 (COBRELATION  AND  1/23 (STANDERD 0.658 1/23 /24 (CORRELATION ARD  1/23 (STANDERD 0.68§
COEFPICIENRT) DEVIATION) COEFF1CIEHT) DEVIATI0H)
1/29 §/21 (COBBELATIOR  AND  §/21 (STANDERD 0. 651 1/28 1/2¢ (CORRELATION AND  7/24 (STANDERD 0.751
COEFFICIEHT) DEVIATION) COEFFICIENT) DEVIATION)
1/29 5/21 (CORRELATION AND  1/23 (RANGE 0.681 1/28 1/24 (CORRELATION ARD  1/23 (RARGE 0.58§
COEFFICIENT) SUBTRACTION) COEFFICIENT) SUBTRACTION) i
1/28 5/21 (CORBBLATION  AND  5/21 (BANGE 0.541 1/23 1/24 (CORRELATION AND  7/24 (RANGE 0.658
COEFF1CIENT) SUBTRACT ION) COEFFICIENT) SUBTRACT [ON)

Table 9 CORRELATION between
MULTI-TEMPORAL and SPATIAL

MULTI-TEMPORAL AND SPATIAL

CORBELATION

Table 10 CORRELATION between
MULTI-TEMPORAL and SPATIAL

MULTI—TEMPORAL 'AND SPATIAL CORRELATION

1/23 10/9 (COERELATION AND 1/28 (STANDERD 0.891 §/2% 1/24 (CORRELATION AND -5/21 (STANDERD 0.92¢
COEFPICIENT) . DEYIATION) COEFFICIENT) DEVIATEON)

1/28 10/9 (CORRELATION AND 10/9 (STANDERD 0.855 §/21 1/24 (CORRELATION AND 1/24 (STANDEED 0.899
COEPFICIENT) DEVIATION) COEFFICIENT) DEVIATION)

1/28 10/9 (CORRELATION AND 1/28 (RAKGE 0.810 §/21 1/24 (CORRELATION AND §/21 (BAKGE 0.805
COEFPICIENT) SUBTRACT 10N} COEFFICIENT) SUBTRACTION)

1/28 10/9 (CORRBLATION AND 10/9 (BANGE 0.914 §/21 1/24 (CORBELATION AND 7/24 (BANGE 0.0808
COEFFICIENT) SUBTRACTJON) COEFFICIENT) SUBTRACTI0N)

Table 11 CORRELATION between
MULTI—-TEMPORAL and SPATIAL

Table 12 CORRELATION between
MULTI—TEMPORAL and SPATIAL

MULTI~TEMPORAL AND SPATIAL

CORRELATION

MULTI-TEMPORAL AND SPATIAL CORRELATION

5/21 10/9 (CORBELATION ARD 572 {STANDERD 0.559 1/24 10/9 (CORBELATION AND  7/24 (STANDERD 0. 699
COEPFICIENT) DEYIAT108) COBFFICIENT) DEVIAT [ON)

5/21 10/9 (CORRELATION AND  10/9 (STANDEED 0. 48§ /24 10/9 (CORRELATION ASD  10/9 (STANDERD 0.530
COEFFICIENT) DEYIATION) COEFFICLENT) DEVIAT IOR)

§/21 10/9 (CORBELATION AND 5721 (RAKGR 0.501 /24 10/9 (COBRELATION AND  1/2¢ (RANGE 0.587
COEFFICIENT) SUBTRACT 10K) . COEFFICIENT) SUBTRACT JON)

§/21 10/9 (CORRELATION AND  10/9 (RANGE 0.455 /24 30/9 (CORRELATION AND  10/9 (RANGE 0477
COEFFICIENT) SUBTRACT ION) COEFPICIENT) SUBTRACTION)
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Table.13 CORRELATION between
MULTI-TEMPORAL and SPATIAL
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Table.14 CORRELATION between
MULTI—-TEMPORAL and SPATIAL

MULTI—-TEMPORAL AND SPATIAL COBRELATION MULTI-TEMPORAL AND SPATIAL CORRELATION

1/28 5/21 ¢ MAX - MI¥ ) AND  1/23 (STANDERD 0.488 1/23 1724 ¢ MAX < MIH )  AND  1/28 (STANDERD 0.32¢
DEVIATIOR) DEVIATIOX)

1728 §/21 ( MAX - MIN ) AND 5/21 (STANDERD 0.3819 1723 1724 ¢ MAX ~ MIN ) ARD  1/24 (STARDERD 0.299
DEYIATION) DEYIAT10X)

1/28 5/21 ( MAX ~ MI¥ ) AND . 1/23 (RANGE 0.929 1/28 1/24 ¢ MAX - MIN ) AND  1/23 (RANGE 0.937
SUBTRACT I10K) SUBTRACT LOX)

1728 5/21 ( MAX - MIE ) AND  5/23 (RANGE 0. 80t 1728 1/24 ¢ MAX - MIM ) AND  1/24 (RANGE 0.221
SUBTRACT JON) " SUBTRACTIOH)

Table.15 CORRELATION between
MULTI-TEMPORAL and SPATIAL

Table.16 CORRELATION between
MULTI-TEMPORAL and SPATIAL

MULTI—-TEMPORAL AND SPATIAL CORRELATION MULTI-TEMPORAL AND SPATIAL COBRELATION

1/23 10/9 ( MAX - MI¥ ) AND  1/28 (STANDERD 0.582 §/21 1784 ( MAX - MIN )  AND  §/21 (STANDERD 0.642
DEVIATION) DEVIATIOR)

1/23 10/9 ( MAX - MI¥ ) AND  10/9 (STANDERD 0.5M 5/21 1/24 { MAK - WIN ) AND  1/24°(STANDERD 0.599
DEVIATION) DEVIAT[ON)

1/23 1079 ( WA% - MIN ) AND  1/29 (RANGE 0.521 §/21 1/24 ( MAX - MIN ) AND  5/21 (BANCE 0.628
SUBTRACT [ON) SUBTEACT 10X)

1729 10/2 ¢ BAX - MIH ) AND  10/9 (RAKGE 0.549 §/20 1724 ( MAX - MIN ) AND  7/24 (RANGE 0.511
SUBTRACT 1ON) SUBTRACT10H)

Table.17 CORRELATION between
MULTI—TEMPORAL and SPATIAL

Table.18 CORRELATION between
MULTI—-TEMPORAL and SPATIAL

MULTI-TEMPORAL AND SPATIAL CORBELATION MULTI-TEMPORAL AND SPATIAL COBRELATION
5/21 10/9 { MAK - MIE )  AND  5/21 {STAHDERD 0.481 /24 10/9 ¢ MAX - MIN ) AND ' '1/24 (STANDERD 0.822
DEVIATION) DEVIATION)
5721 3079 (. MAX - MIN ) AND  10/9 (STANDERD 0.329 1/24 10/9 ( MAX ~ HIN ) ARD  10/9 (STANDERD 0.197
DEVIATI0K) _ DEVIATION)
§721 10/8 { MAX - MIK ) AND  §$/21 {RANGE 0. 399 T/24 30/9 ( MAX - MIN ) . AND  1/24 (RAKGE 0.2
SUBTRACTION) 'SUBTRACT 10W)
/21 10/9 ( MAX - MIN ) AND  10/9 (RANGE 0.209 /24 10/9 C MAX - MIK )  AND  10/9 (RANGE 0. 090
SUBTRACT 108) SURTRACT[OR)
400 512 :
Z Il (Xij—Xavg(u,v)) (Yij~Yavg(u,v)) )
— - 1= .
cor = 400 512 .. 2 400 512 Py (16)
J{Z Z{ (Xij—Xavg(u,v)) }W{E Z{ (Yij—Yavg(u,v))}
=y 1= =1 i=

Xij: multi - temporal image of thermal texture
Xavg(u,v): average CCT count value

of multi - temporal image of thermal texture
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Y ij: spatial image
Y avg(u,v): average CCT count value
of multi —temporal image of termal texture

cor; correlation coefficient

8 . Result of Analysis

8.1 Image Calibration

As the result of calibration using normal equation of correlation coefficient, the dynamic range
is unified.

So far calibration method using regression formula has not been tried for LANDSAT / TM data
at all. Because dynamic range of LANDSAT/TM is narrow, that means, it causes the difficult
problem for thermal image processing. The original images of data have been normalyzed and
have been used only normalyzed parameters measured only histogram, but in fact, these parameters
must use not only histogram but also satellite parameter.

These things cause that end users do not know informations of all satellite system, geometric,
systematic corrections etc, so result of each study is not adjustable and dependent.

Though satellite and sensor parameters are unknown, in order to examine texture algorism and

characteristics of thermal multi - temporal and spatial texture, it is fully satisfied to do the calibra-
tions with histogram parameters.

8.2 Thermal Environmental Conditons from Multi-temporal and Spatial Informations

Multi - temporal thermal informations were extracted by texture images of correlation coeffi-
cient and max. - min. methodology and spatial informations were extracted by texture images of
standerd deviation and range subtraction.

Both were compared by images processing and regression analysis. Image processing was esti-
mated by high and low of CCT count values, calculated from the absolute subtraction, that means,
the places where CCT count value is law, are having the same thermal behave. Regression analysis
was estimated by correlation coefficient.

As a result, in method of image analysis, texture image of correlation -coefficient as multi —
temporal image can extract difference between multi — temporal and spatial informations, and in

method of regression analysis, texture image of max. —min. as multi —temporal extract difference
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between multi — temporal and spatial information, if method of image analysis use texture image of
max. —min., images are hard to look due to random pattern, so image information do not acquire
and if method of regression analysis use texture image of correlation coefficient, correlation ceoffi-
cient is very bad.

Method of image processing make out that black part in image (low CCT) shows that same
behavior between multi —temporal and spatial.

White area (high CCT) to block area are different behavior—, rever, vegetation, sea coast—,
different behaved area is that either multi—temporal or spatial characteristics is higher. These
things do not find because of absolute subtraction.

Then method of regression analysis verify image processing using coefficient, this method
analyze except rever, vegetation, sea coast where these area are different behavior.

Specially, it is very high to correlation coefficient between multi - temporal image (by texture
image of correlation coefficient) in FEB.23 and OCT.9 and spatial image (by texture image of
standerd deviation) in OCT.9, thermal characteristics of both is same behavior.

The result of study could acquire high potentiality to estimate urban thermal environmental in-

formation from in spatial to multi —temporal.
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