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Some results of the Zetterberg codes

Toyokazu Hiramatsu * and Tetsuya Ochiai * *

Abstract

We deal with the several properties of the first Zetterberg code C, which is one of the best
known double error—correcting codes. We first determine the complete weight hierarchy of C,
and next treat an algebraic decoding algorithm for C.. Finally certain relation between the weight

distribution of C, and the traces of Hecke operators is remarked.
§1 Introduction

For an integer s>1 let n=2*+1 and let @ be a primitive n th root of unity in
the field GF(2"). The Zetterberg code C, is defined to be a binary cyclic code of length
n generated by the minimal polynomial g,(x) of a over GF(2). The code C. has
dimension n—4s and minimum distance 5. Therefore C, is a double error — correcting
binary linear code.

From now on we consider the case s=2. According to Berlekamp’'s algorithm, the
factorization of the polynomial x" —1 over GF(2) into irreducible factors is given by

the following

X"=1=(x-1) +x+x'+x+1) C+xX+x*+x'+x*+x+ 1).
Then we can put

gx) =x*+x+x*+x'+x*+x+1, 6]’
and the roots of g.(x)

{a,a a®,a”) (a¥=a") @
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form a normal basis of GF(2%) over GF(2). It is easily checked that

11101011100000000
01110101110000000
00111010111000000
00011101011100000
G=|100001110101110000 @
000001110101110600
00000011101011100
00000001110101110
00000000111010111

is a generator matrix for the code C, with generator polynomial g.(x).

§2 The generalized Hamming weights of C,

Let C be an (n, k) linear code and D be a subcode of C. The support size of D, denoted
by x (D), is defined as the number of positions where not all the codewords of D are

zero. The r th generalized Hamming weight of C is then defined by

d.(C) =min {¥(D):D is an r— dimensional subcode of C}

for 1=r<k. In particular, d,(C) is just the minimum distance of C. The weight hierarchy
of C is defined to be the set of generalized Hamming weights {d.(C) :1<r=k}. The
following theorem is known as monotonicity of d,(C) ([5]) and we state it without
proof :

Theoerm 1. For every linear (n, k) code C,
0<d(C) <d,(C) < - <d(C) =n.
In particular, d.(C) =n—k + r for 1=r=k.
In the following we shall determine the weight hierarchy of the code C..

Theorem 2. The Zetterberg code C, has the following weight hierarchy :

{d.(C) : 1=r=9} = {5,8,10,11,13,14,15,16,17}.
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Proof. First let us recall that d,(C,) =5. We can list up the all codewords of C, by
(3) and then it is easy to construct all 2-dimensional subcodes of C, Thus we have
d.(C,) =8. After a computation similar to that in the above case r=2, we have also
di;(C,) =10. By Theorem 1, 10 < d,(C,) <12 and we have d.(C,) =11 by computations
of 4-dimensional subcodes of C,. Also we obtain d;(C,) =13 by similar method. The

remaining cases are trivial by Theorem 1.

§3 Algebraic decoding of C,

In this section we shall give another proof of Lemma 2 in [1] by using g.(x) of
(1.
Let C(x) be a codeword in C,, r(x) be the received word and e(x) =r(x) — C(x)

the error pattern. We consider the syndromes

Si=e(ah), i=2, 0<j<T.

It is obvious that

S, =87 ,0<j<7.

In particular we put

S, = SI24

and set y =S§,S., which is an element in GF(2%).
Now we define the trace of 7 € GF(2*) over GF(2) by

trGF(2*) /GF(2)(t) =1+ 12+ 7%+ - 4+ 7 2*!

Then we have the following theorem which is Lemma 2 (s=2) in [1].

Theorem 3. trGF(2')/GF(2)(7 ") =1 if and only if two errors have occurred in the
transmission.

Proof. The first half. Suppose that two errors with locators a" and a'* have occurred

for 0<j,<j,<2'. Since



22 Toyokazu Hiramatsu and Tetsuya Ochiai ERAEIE2IWFERE B3

Ss=a'"+a* S.,=a+a’

we have
y=a't+aq P,

Now we can assume that y was chosen in such a way that
r=at+a’=a’+a’.

Since a,a*a?-,a? is a normal basis of GF(2®) over GF(2), the elements

B=a+a?p’=a*+a?Bf%=a*+a? B =a’+a?

belong to GF(2') and form a normal basis of GF(2') over GF(2). Then the minimal
polynomial f.(x) of 8 over GF(2) is given by the following

f.(x) =x*+x*+x*+x+1.
Therefore 8°=1 and thus
ry'=8"=8"
Let 7 €GF(2) and
r=3a 87 ac GF(2).
Then we have
trGF(2)/GF()(z) = Ja.
Therefore
trGF(29/GF(2)(y"") =1.

The latter half. Let r be an element of GF(2®) such that trGF(2*)/GF(2)(z) =0.
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Then the quadratic equation

xX+x+7=0

has two roots in GF(2*) given by

7 i
x=rxa’,
i-0
where
7 2.
r=fpa’;

x0=6' X|=6+bl,'". X1=6+b|+‘“+b-,

with 6=0 or 1 ([3], p.278, Theorem 13).
Since 7 '€ GF(2Y) then trGF(2*)/GF(2)(7"") =0 and the following equation
(XIIZ)2 + xIIZ + ,r -\ = 0

has two roots, say &,"° and &,”. Therefore the locators

a h S| 6."2, a h — SI 63"2

correspond to the syndrome S,. Q.E.D.

Based on the above, an algebraic decoding algorithm for C, is the following ([11):

1) Calculate S,=r(a) and go to 2).

2) If S, =0, then no error has occurred. Otherwise, go to 3).

3) Calculate y =8,” and if vy =1 there is a single error with locator S,. Otherwise,
go to 4).

4) Calculate v ' and tr(y '). If tr(7") =1 go to 5). Otherwise, three errors have
occurred and decoding is failure.

5) Solve the equation

xXX+x+7:=0 C))

and correct two errors on positions
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ai.__: Sl 5."2. a ”=S| (53“2,
where &, and &, are two roots of (4) in GF(2).

Remark. The weight distribution of C,

Let C be a linear code of length n and A, be the number of codewords of weight
i. Then the sequence {A. A~ A. is called the weight distribution of C. In the following
we study some relation between the weight distribution of the Zetterberg code C, and
the traces of Hecke operators acting on spaces of cusp forms ([4]).

For any integer N21, put
ab o _
P = ((23)esL(@:a=d=1c=0 mod N.

Let k be a positive integer and S.(I',(N)) be the linear space of cusp forms of weight

k on the group TI',(N). For
f(z) = L 2. €™ & S(T,(N),
we set
T() - £(2) = £ (Z & 'Bgee) €™
and is called the n th Hecke operator on S.(I',(N)). Then we have the following trace
formula of Hecke operators :

Theorem A. The trace of the Hecke opeator T(2') acting on the space of cusp forms
S.(T,(4)) is given by

(k=2)
-1- ZI:Qx » (L.2OH(E - 2% (k >2),

Tr(T(2)) =

where the sum over t is taken over {t€Z:t?<2° and t=1 mod 4}, H(t# —2°) denotes

the Kronecker class number of t*— 2° and

Y

Qe .(t.2Y) =

1 _;x—l
-0
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here p and p denote the zeros of x*—tx + 2'=0.
We denote by g, the cyclic group generated by a. Then the dual C,' of the code
C, is given by

C.- = {(trGF(2*)/GF(2)(ax))ic.. : a € GF(2Y)]).

Then the weight distribution of C,' is as follows :

Theorem B. The non-zero weights of the code C,* are
w.=%(l7—t). <2 and t = 1 mod 4 ;

and w, has frequency 17H (£ — 2%).
It is essential for its proof that if N(t) denotes the number of classes of GF(q) —
isomorphisms of elliptic curves over GF(q) such that the number of points over GF(q)

is equal to g+ 1 —1t, then
N(t) = H(t - 4q).

This formula is basically due to Honda and Schoof.

Finally the weight distribution of the Zetterberg code C, itself is obtained by applying
the MacWilliams theorem ([2], p.39).

Theorem C. The number A, of codewords of weight i in the Zetterberg code C, is

given by

2‘A.=(li7)— 17EVe, (291 + 7,5 (29),

1.0 mol2

where the polynomials V,(2') are defined by

Veo=1, Vi, =1,
(+ D) Vi =2V, +V,— (I8=1D V. .,
(0=j=i, i=j mod 2)
and 7.(2') denotes the trace of the Hecke operator T(2') on the space S.(I',(4))(k=

3). For convenience we let 7,(2") =-— 2



26

(1]

(2]

(3]

(4]

(5]

Toyokazu Hiramatsu and Tetsuya Ochiai HEHAFIEHMTRME (FE315)

References

S. M. Dodunekov and J. E. M. Nilsson, Algebraic decoding of the Zetterberg codes,
IEEE Trans. Inform. Theory 38 (1992) 1570—1573.

J. H. van Lint, Introduction to Coding Theory, 2nd Ed. (Springer — Verlag, Berlin
Heidelberg, 1992).

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes (North
— Holland, Amsterdam. 1977).

R. Schoof and M. van der Vlugt, Hecke operators and the weight distributions of
certain codes, J. Comb. Theory, Ser. A 57 (1991) 163—186.

V. K. Wei, Generalized Hamming weights for linear codes, IEEE Trans. Inform. Theory
37 (199D 1412-1418.



