法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-07-12

真空蒸着法により形成したペンタセン薄膜の 評価

八尾, 典明 / YAO, Noriaki

(発行年 / Year) 2007-03-24

(学位授与年月日 / Date of Granted) 2007-03-24

(学位名 / Degree Name) 修士(工学)

(学位授与機関 / Degree Grantor) 法政大学 (Hosei University)

2006年度 修士論文

論文題名 真空蒸着法により形成した

ペンタセン薄膜の評価

指導教授 佐藤 政孝

大学院工学研究科

電気工学専攻修士課程

05R3245

ャオ ノリアキ 八尾 典明

概要

近年、有機半導体に関する研究が急速に進展している。有機半導体はシリコンなどの無機半導体では困難な、耐衝撃性に優れたフレキシブル(軽量で柔軟性のある)ディスプレイへの応用や、デバイス製作プロセスでの総合的な低温化が可能である。また、リソグラフィーを必要としない「印刷」技術の利用が検討されているなど、三次元集積(重ね塗り)や大面積印刷を行うことで、大量生産での大幅なコストの削減が期待されている。

現在多くの有機半導体の中が研究されているが、アモルファスシリコンと同 程度のホール移動度(~1cm/Vs)を有するペンタセンが注目されている。

ペンタセン(C₂₂ H₁₄)は融点が 300℃、沸点は 525℃で、真空蒸着法により容 易に良質な薄膜を得られることが知られている。そこで本研究では、glass-plate 及び SiO₂/Si 基板上に抵抗加熱真空蒸着法によりペンタセン薄膜を形成し、主に 光学的測定法を用いて薄膜の評価を行った。

洗浄処理を施した glass-plate および SiO₂/Si を基板とし、真空蒸着(真空度 5.0E-7Torr)にて 500nm のペンタセン薄膜を形成、その後 AFM 観察及び各光学 測定を行った。

AFM による表面観察では、ペンタセン薄膜特有のグレインが多数観察された。 SiO₂/Si、glass-plate 基板上に形成した薄膜のグレインは、共に文献に報告され ているグレインサイズと比較して小さく、形状は不均一でアモルファス相の成 長が支配的であることがわかった。

X線回折による測定では 5.7, 11.4 および 17.2deg(thin-film phase)、6.1, 12.2 および 18.3deg(bulk phase)での高い強度を確認、レーザラマン分光法による測 定では 1161,1180,1375 および 1600cm⁻¹に目立ったピークが、光吸収による測 定では 1.83eV(HOMO-LUMO band)でのピークが観測された。

目次

概要

1. 序論

- 1.1. 有機材料とペンタセンの特徴
- **1.2.** 有機半導体の現状
- 1.3. 研究背景

2.原理

- 2.1. 原子間力顕微鏡(AFM)の原理
- 2.2. X線回折(XRD)の原理
- 2.3. レーザラマン分光法の原理
- 2.4. 光吸収測定の原理

3.実験方法

4.結果及び考察

5.結論

謝辞

参考文献

1. 序論

1.1. 有機材料とペンタセンの特徴

●有機材料の特徴

有機化合物は、主として炭素(C)、水素(H)、窒素(N)原子を構成分子として成 り立ち、現在までに 500 万種類以上にものぼる膨大な数の物質が作り出されて いる。種類が多いということは有機材料のひとつの特徴になっている。小数の 種類の原子から多数の化合物が作り出される理由は、炭素原子がそれ自身、何 個でも連なって結合できるので様々な骨格ができること、及びそのほかの原子 とも安定な結合を作りやすいことにある。炭素(C)、水素(H)、窒素(N)の原子番 号はそれぞれ6、1、7であり、各原子には電子が、6個、1個、7個存在してい る。これらの電子は、原子内の電子軌道にパウリの排他原理(Pauli's principle) を満足しながら、エネルギーの深い軌道から詰まっている。水素原子の場合に は、1s 軌道に1個(1s₁)、炭素原子の場合には1s 軌道に2個、2s 軌道に2個、 2p 軌道に 2 個電子が入っている(1s₂2s₂2p₂)。また、窒素原子の場合は、1s 軌道 に2個、2s軌道に2個、2p軌道に3個電子が入っている(1s₂2s₂2p₃)。化合物を 構成するときは、もちろん元素どうしは互いに接近し、元素のもつ電子軌道や 電子配置を変えて結合する。例えば、炭素元素どうしでは、自身の電子軌道や 電子配置を変えて1 重結合、2 重結合及び3 重結合という安定な結合を取ること が可能である。

σ結合とπ結合

炭素原子では、2s 軌道に 2 個、最外殻 2p 軌道に 2 個(px、py 軌道に 1 個ずつ) の電子が入っている。炭素が結合するとき、これらの軌道は形をかえ、2s 軌道 と三つの 2p 軌道とが混成して sp_3 混成軌道(hybridized orbital)を形成する場合 がある。 sp_3 混成軌道は結合の手を4本もっている。すなわち、正四面体の重心 に置かれた炭素原子核を中心として、頂点の方向に伸びる四つの軌道をもって いる。単体のとき、2s 軌道、2p 軌道に存在した計 4 個の電子は、これら 4 方向 にのびる sp_3 混成軌道に一つずつ入る。一つの軌道には二つの電子が入れるので、 隣の原子と結合することができる。ペンタセンでは、炭素原子核からのびる 4 個の混成軌道は、水素原子、あるいは隣接の炭素と軌道を共有することで一つ の軌道に 2 個の電子を納め、安定な分子を構成している。炭素間での結合では、 結合の方向と軌道の向きは同じであり、結合にあずかる電子は局在する傾向が 強くなる。この結合が σ 結合で、結合にあずかる電子は σ 結合電子とよばれて いる。(図 1.1.1) σ 結合電子は局在する傾向が強く、電界が加えられてもその向 きに沿って偏在する傾向は少ない。

図 1.1.1 sp3 混成軌道とσ結合

炭素が結合するとき、2s 軌道が 2p 軌道と混成して sp2 混成軌道と sp2 混成軌 道面に垂直な pz 軌道を形成する場合もある。sp2 混成軌道は結合の手を 3 本も ち、炭素を中心として 120° ずつ異なった 3 方向にのびる三つの軌道をもって いる。単体のとき、2s 軌道、2p 軌道に存在した電子のうち 3 個の電子は、これ ら 3 方向にのびる sp2 混成軌道に一つずつ入る。一つの軌道には二つの電子が入 れるので、隣の原子と結合することができる。ペンタセンでは、炭素から伸び る 3 個の混成軌道は、水素原子、あるいは隣接の炭素と軌道を共有することで ひとつの軌道に 2 個の電子を収めている。一方、pz 軌道では、隣接する原子が 存在しないので、pz 軌道どうしが重なって結合している。pz 軌道どうしが重な った結合は π 結合とよばれ、この結合にあずかる電子を π 結合電子とよんでい る。(図 1.1.2) π 電子では、結合の方向と垂直に電子の軌道をもち、隣り合った 軌道間では電子を共有するので、π結合電子は非局在化しやすい。そのためπ 電子は電界に対して敏感に反応する。

図 1.1.2 sp2 混成軌道と π 結合

また、ペンタセンは5個のベンゼン環が直鎖状に連結した構造をとっている。 ベンゼン環は、炭素が6個からなり、元素間は sp2混成軌道と2pz軌道どうし の重なりで2重結合が形成されている。pz軌道同士の結合は隣接するどちらか の原子に対しても等価に行われ、実質的にベンゼン環内を自由にπ電子が動き 回っているものとみなせる。

以上述べたように、σ電子とπ電子の存在は有機材料の電子機能の特徴とし て現れる。

図 1.1.3 ベンゼン環と電子軌道

●有機材料のバンド構造

C元素からなるダイヤモンドのような絶縁体も、シリコンと同様にして 2s 軌 道と 2p 軌道が sp3 混成軌道をなして σ 結合電子により結晶を形成し、エネルギ ーバンドを構成する。ただし、この場合は、 σ 電子を取り出すのに必要なエネ ルギーはきわめて大きく、エネルギーギャップは約 5eV 以上となる。価電子帯 から伝導帯へ励起されている電子はきわめて少なく、電子が充満したバンドと 殻のバンドとが完全に分かれている。つまり、外部電界が加えられても電子が 動けるエネルギーバンドはない。ペンタセンでは 2s 軌道と 2p 軌道が sp3 混成 軌道をなして σ 結合電子により C 元素および H 元素が結合されている。ダイヤ モンドと同様、この σ 結合電子は用意に取り出すことができない。結局有機材 料といわれるものが絶縁体になりやすいのは、構成分子が炭素、水素、窒素な どからなり、結合にあずかる電子が 2s 軌道や 2p 軌道などのようにエネルギー の比較的深い位置にあるためといえる。また、エネルギーの深い位置の電子が 結合に関与するので、化学的には安定な物質といえる。

ところで、ペンタセン分子どうしを結びつける結合力の主体はファン・デル・ ワールス力で、分子間では相互作用は小さく、一つ一つの直鎖状分子の持つ固 有の性質はほとんどそのまま保持されている。有機材料全般的に膜形成をした ときにも、特に分子の配列制御などを行わない限り、分子は比較的弱いファン・ デル・ワールス力により結合される。つまり、膜内の一つ一つの分子は固有の 性質を保持している。このような性質は有機膜に特有である。ひとつの分子が 形成されるとき、構成原子どうしは相互作用をし、原子の軌道の形を変えて結 合している。つまり、新たな分子軌道を形成してエネルギーの低い順位からパ ウリの排他原理を満たしながら二個ずつ電子が占めているというモデルを用い て分子の状態が図示できる。(図 1.1.4) 電子で占められた最も高いエネルギーの 高い軌道は最高被占軌道(HOMO:highest occupied molecular orbital, バンド 理論での価電子帯の上端のエネルギー準位に相当)、電子で占められない空軌道 で最もエネルギーの低い軌道は最低空軌道(LUMO:lowest unoccupied molecular orbital, バンド理論での伝導帯の下端エネルギー準位に相当)とよば れる。HOMO 準位と LUMO 準位間が禁制帯幅(バンド理論でのエネルギーギャ ップ)に相当する。骨格が σ 結合である有機材料では禁制帯幅はきわめて大きく、 HOMO である σ から LUMO である励起状態の σ *へ励起するためには大きな エネルギーが必要である。

一方 π 結合電子は π 結合が関与する元素間を自由に運動する。このことは、 π 結合電子が形成する分子軌道は、 σ 結合電子が形成する分子軌道よりもエネ ルギー的に見ると一層密になる可能性が高い事を意味している。絶縁体を半導 体、金属等の導電体とするためには、HOMO準位とLUMO順位間の禁制帯幅 を小さくしなければならないが、有機材料では π 電子を利用することによりこ の実現が可能となる。つまり π 結合電子が関与する機能性分子を含む有機分子 が高度に配列することなどが膜形成技術と結びついて重要となる。

●ペンタセンとペンタセン薄膜の特性

アセン系と呼ばれる縮合多環系化合物は早くから半導体としてしられており、

とりわけベンゼン環が5つ結合したペンタセン(図1.1.5)は現在最も多くの研究 がなされている材料である。ペンタセンが多く用いられているのは、真空蒸着 法で容易に薄膜を得ること、熱に対する安定性が高く特別な測定手法を用いな くても容易に優れた特性が得られるからである。また、アセン系材料は高い移 動度を有しており、高い結晶性を有していることが要因の一つであるとされて いる。しかしながら、完全な単結晶よりは多結晶状態で薄膜化することが多い ので、グレイン境界(結晶粒界)によるトラップも多く、移動度の低下が起こる。 ペンタセンの結晶構造やグレインサイズは、製膜条件に大きく支配される。一 般に、基板温度を低温にし、高速でペンタセンを薄膜化すると、アモルファス 相として成長しやすくなる。一方、基板を高温にし、低速で薄膜作成すると、 結晶相ができやすくなるとともに、グレインサイズも大きくなる傾向がある。 また、ペンタセン薄膜をシリコン基板上に成長させる際に表面の不純物に付着 する傾向があり、そのため成長が不規則になりグレインサイズが小さくなって しまうという研究報告もある。結晶を大きく成長させるために、シリコン基板 上に「シクロヘキサノン」とよばれる分子の単一層「分子バッファー」を塗布 し、シリコン基板上のくっつきやすい場所を覆うことで、ペンタセンを非常に 大きな結晶に成長させることが可能となる。

ペンタセンに代表される有機半導体におけるキャリアの輸送機構は①分子か ら分子へのホッピング機構(アモルファス相に見られる)②バンド的な拡散伝導 (結晶相に見られる)が挙げられる。(図 1.1.6)分子が周期的に並んだ結晶の場合、 結晶の端から端まで非局在化した電子波が立つため、電子は素早く伝導する。 しかし、分子がバラバラに存在するアモルファス膜の場合、電子は分子一つ一 つに局在しながら順番にホッピングして行かなくてはならない。

また、有機半導体にも無機半導体のような不純物ドーピングの概念が存在する。ペンタセン薄膜にヨウ素(アクセプタ)やアルカリ金属(ドナー)の蒸気を触れ させることで、これらのドーパントがペンタセン分子層間に入り込み、その電 気伝導度が飛躍的に増大する。

図 1.1.5 ペンタセン分子

図 1.1.6 ホッピング伝導とバンド伝導

1.2. 有機半導体の現状

有機半導体材料の研究は古くは 1954 年の井口洋夫博士、赤松秀雄博士の有機 化合物の導電性の研究から始まり、最近では白川秀樹博士が導電性高分子の研 究でノーベル賞を受賞するなど、日本におけるこの分野の研究は先駆的なもの として認識されている。有機半導体材料を用いた有機トランジスタの研究も 1986 年のポリチオフェンを用いた有機薄膜トランジスタの開発に始まり、欧米 の研究機関でも日本の研究報告が多く引用されている。しかしながら、これま での有機トランジスタの性能は実用には程遠く、あまり注目されていなかった。 有機トランジスタの性能をシリコンデバイスと比較して著しく低下させている 原因は有機材料の有するキャリア移動度(μ)の低さである。アモルファスシリコ ン(a-Si)やポリシリコン(poly-Si)のキャリア移動度はおよそ 1~100cm²/Vs であ るのに対し、通常の有機半導体材料のキャリア移動度はアモルファス状態で 10⁻⁶ ~10⁻³cm²/Vs 程度、単結晶の状態で 1cm²/Vs を超える程度である。そのため、 充分なデバイス特性を得ることが困難であったからである。

最近になって欧米を中心とした研究グループから単結晶あるいは薄膜結晶有 機半導体を用いたトランジスタの報告が相次ぎ、シリコン、化合物半導体に続 く新しい半導体材料として期待されるようになった。特に、有機材料本来の特 徴である軽量、大面積、フレキシブルな特性を活かした全有機系デバイス開発 に向けた研究が活発に行われている。有機材料が本来持ち合わせる柔軟性、軽 量性、耐衝撃性を活かしたデバイス、製品への応用が期待されている。また、 有機材料は溶媒に溶解させて溶液とすることができること、加熱して溶解させ ることも容易であるため、印刷プロセスの適用が可能であり、大量生産、大面積化、低コスト化という製造面での利点も大きい。

応用製品としては、柔軟かつ可とう性のプラスチック基板上に作成した電子 ペーパー、ディスプレイ素子、ICカード、情報タグなどの携帯用電子機器から バイオセンサーといった医用応用機器まで多くの用途への展開が期待されてい る。

	有機半導体	シリコン	化合物半導体	
受光	0	0	0	
発光	۲	Δ	0	
移動度(高速性)	Δ	0	0	
高出力	××	0	0	
耐熱性・耐久性	×	۲	Δ	
柔軟性・耐衝撃性	۲	Δ	××	
三次元集積	0	۲	0	
加工性	0	Δ	×	
大面積	0	×	××	
製造エネルギー	0	×	×	

表 1.2 各種半導体の比較

1.3. 研究目的

ペンタセンの研究を始めるにあたり、ペンタセンとペンタセン薄膜の基本的 な性質を知ることが重要である。まずは、容易に薄膜形成ができるという真空 蒸着法を用いて実際に薄膜を形成し、結晶性、エネルギーギャップ及び電気特 性の評価を行う。ここで得られた結果を元に今後の研究に繋げていくのが本研 究の目的である。

2. 原理

2.1. 原子間力顕微鏡 (AFM)

AFM とは探針先端の原子を試料に近づけた際に働く原子間力を利用して、表 面構造を観察するプローブ型の顕微鏡である。カンチレバー先端の探針を試料 表面に微小な力で接触させ、カンチレバーのたわみ量が一定になるように、探 針・試料間の距離を制御しながら操作することで、表面形状を画像化する。本 研究ではセイコーインスツルメンツ社製の原子間力顕微鏡(ナノピクス)を用い た。分解能は垂直方向において 0.3nm である。カンチレバーには自己検知型シ リコンカンチレバーを装備しており、従来の光てこ検出器のような光軸調整が 不要である。この自己検知型のカンチレバーにはピエゾ抵抗体が内蔵されてお り、電流を流して操作すると、試料の凹凸に応じてレバーがたわみ、内蔵した、 抵抗体の抵抗値が変動する。この抵抗値が一定になるようにフィードバックを 行い、フィードバック量から観察画像を取り込むことができる。また、この装 置には図 2.1 に示すような、二つの観察モードがある。

- コンタクトモード:カンチレバーが常時試料表面に微小な力で接触した状態 で形状観察を行うモード。
- ダンピングフォースモード(DFM):共振させたカンチレバーの振動振幅が 一定になるように探針・試料間の距離を制御しながら走査することにより、 表面形状を画像化するモード。樹脂などの柔らかい試料でも、試料を傷つ けずに測定が可能である。

この二つのモードを測定試料の材料、測定条件、試料表面の状態により、使い分け、測定を行う。

図 2.1 コンタクト、ダンピングフォースモードの観察原理図

2.2. X 線回折(XRD)

X線回折は物質の微細構造研究において有用な手法である。結晶はX線を回折し、その仕方によって結晶の構造が分かる。

以下にX線の発生機構の基礎と、その回折現象の基本となる Bragg の法則、 格子の幾何学について述べる。

●X線スペクトル

X線は 10~100keV に加速された電子がターゲット(陽極)の金属に当って 発生する。発生したX線スペクトルは連続的な部分と線状の部分からなってい る。前者を連続X線(continuous X-ray)、後者を特性X線(characteristic X-ray) という。

図 2.2.1 はW (タングステン)をターゲットとしたときのX線スペクトルである。

図 2.2.1 W ターゲットから放射される X 線スペクトル

<u>i) 連続X線(continuous X-ray)</u>

電子がターゲット物質に衝突して、物質中の原子核の電場によってク ーロン力を受け、電子の進路が曲げられ、減速されるときに放射される 制動放射(bremsstrahlung)が連続X線である。

<u>ii)特性X線(characteristic X-ray)</u>

原子は原子核とそれをとりまく K,L,M…殻内の電子から成っている。 高速の電子が物質内の原子に衝突すると、核に近い内殻の電子が叩き出 されて空孔を生ずる。その空孔に外側の殻の電子が遷移することにより 特性X線が放射される。

図 2.2.3 に示すように、K,L,M 核などのエネルギー準位(主量子数

n=1,2,3…に対応) に遷移するときに放射されるX線をそれぞれ K,L,M 系列などのX線と呼ぶ。

L 殻、M 殻から K 殻のエネルギー準位へ遷移するときはそれぞれ K_{a} 線、 K_{g} 線という。

図 2.2.2 連続 X線(continuous X-ray)と特性 X線(characteristic X-ray)の発生機構

図 2.2.3 エネルギー順位図と特性X線

●Bragg の法則

回折(diffraction)は結晶構造と波長とで定まる。電磁波の波長が400~800nm のように可視光領域にあるときは結晶内の個々の原子によって弾性的に散乱さ れた波が重ね合わされて通常の光の屈折が起こる。しかし波長が格子定数(1~ 10Å)と同程度かまたは小さいときは、入射方向と全く違った方向に回折線が現 れる。

入射波が結晶内の平行な原子面により鏡のように反射され、各原子面は、非 常に薄く銀メッキした鏡と同じように、入射波のごく一部しか反射しないと仮 定する。鏡面反射では入射角は反射角に等しい。すると図 2.2.4 に示すように、 平行な面からの反射が強め合うように干渉するときにのみ回折波が現れる。こ こでは弾性散乱を考えていて、X線の波長は反射のときに変化しない。

図 2.2.4 Bragg 反射の条件

図 2.2.4 のように、互いに間隔 d を保って並んでいる 1 組の平行な格子面を考 えるとき、隣り合った面から反射された波の行路差は 2 d sin θ となる。連続し た面から反射された波は、行路差が波長 λ の整数 (n) 倍になるとき、干渉して 強め合う。故に

 $2d\sin\theta = n\lambda$

である。これが Bragg の法則である。また、n を Bragg 反射の次数という。

Bragg の法則は波長 λ が $\lambda \leq 2d$ のときにのみ起こりうる。これが可視光線を 用いることのできない理由である。

図 2.2.4 から得る Bragg 条件の面間隔 d_{hkl}の格子面(hkl)によるn次の Bragg 反射は

$$2\frac{d_{hkl}}{n}\sin\theta = \lambda$$

と書き換えると、面間隔が dhkl / n = d nhnknl の仮想的な面(nh nk nl)による1次

の Bragg 反射とも考えられる(図 2.2.5)。そこで

 $2d_{nhnknl}\sin\theta = \lambda$

と書くことが出来る。

なお(hkl)面による反射は、面指数の括弧をとって hkl 反射と表される。

●格子の幾何学

<u>格子並進ベクトル</u>

格子は3つの基本並進ベクトルa,b,cによって定義される。格子とは空間に おける規則正しい周期的な点の配列であり、結晶構造は原子のつくる単位構造 を同じように各格子点に配置したときにつくられる(論理的関係は(空間格子) +(単位構造)=(結晶構造))。

すなわち格子を定義する点r'は任意の点rを用いて

 $\mathbf{r'} = \mathbf{r} + \mathbf{T} = \mathbf{r} + u_1 \mathbf{a} + u_2 \mathbf{b} + u_3 \mathbf{c}$ ($u_1, u_2, u_3 \subseteq \mathbf{Z}$) と表される。

逆格子ベクトル

逆格子の軸ベクトルa*,b*,c*は上記の基本並進ベクトルa,b,cを用いて

$$\hat{a}^* = 2\pi \frac{\hat{b} \times \hat{c}}{V} \qquad \hat{b}^* = 2\pi \frac{\hat{c} \times \hat{a}}{V} \qquad \hat{c}^* = 2\pi \frac{\hat{a} \times \hat{b}}{V}$$
$$\left[V = \hat{a} \cdot \left(\hat{b} \times \hat{c} \right) = \hat{b} \cdot \left(\hat{c} \times \hat{a} \right) = \hat{c} \cdot \left(\hat{a} \times \hat{b} \right) \right]$$

と定義される。ここで定義されたベクトルは結晶格子の2つの軸ベクトルと直 交する。すなわち**a***,**b***,**c***は

 $\mathbf{a} \cdot \mathbf{a}^* = \mathbf{b} \cdot \mathbf{b}^* = \mathbf{c} \cdot \mathbf{c}^* = 2\pi$

 $\mathbf{a} \cdot \mathbf{b}^* = \mathbf{a} \cdot \mathbf{c}^* = \mathbf{b} \cdot \mathbf{a}^* = \mathbf{b} \cdot \mathbf{c}^* = \mathbf{c} \cdot \mathbf{a}^* = \mathbf{c} \cdot \mathbf{b}^* = 0$ という性質を持つ。

逆格子点の位置は1組のベクトル

 $G = v_1 a^* + v_2 b^* + v_3 c^* (v_1, v_2, v_3 \subseteq Z)$

で与えられる。この形のベクトル Gを逆格子ベクトルという。

面間隔

結晶格子の hkl 面を考える。図 2.2.6 より、hkl 面内の任意の異なる 2 点を示 すべクトルは

$$r_{1} = p_{1}\frac{\hat{a}}{h} + q_{1}\frac{\hat{b}}{k} + r_{1}\frac{\hat{c}}{l}$$
$$r_{2} = p_{2}\frac{\hat{a}}{h} + q_{2}\frac{\hat{b}}{k} + r_{2}\frac{\hat{c}}{l}$$

ただし、 $p_i + q_i + r_i = 1$ (*i* = 1,2)

となる。この 2 点を結ぶベクトル: $r = r_2 - r_1$ と逆格子ベクトル: $G = h a^* + k b^* + l c^*$ の内 積をとると

$$G \cdot r = \left(h\hat{a}^* + k\hat{b}^* + l\hat{c}^*\right) \cdot \left(\frac{p_2 - p_1}{h}\hat{a} + \frac{q_2 - q_1}{k}\hat{b} + \frac{r_2 - r_1}{l}\hat{c}\right)$$

= $(p_2 - p_1)(a^* \cdot a) + (q_2 - q_1)(b^* \cdot b) + (r_2 - r_1)(c^* \cdot c)$
= $2\pi\{(p_2 + q_2 + r_2) - (p_1 + q_1 + r_1)\} = 0$

となる。よって逆格子ベクトル: $G = h a^* + k b^* + l c^* l h k l$ 面に対して垂 直である。

面間隔 d_{hkl}は hkl 面の重心である点ベクトル

$$\hat{P} = \frac{1}{3} \left(\frac{\hat{a}}{h} + \frac{\hat{b}}{k} + \frac{\hat{c}}{l} \right)$$

に対して hkl 面に垂直な単位ベクトル G/|G|への投射を求めればよい。 すなわち

$$d_{hkl} = \hat{P} \cdot \frac{\hat{G}}{\left|\hat{G}\right|} = \frac{1}{3} \cdot \frac{1}{\left|\hat{G}\right|} \left(\hat{a} \cdot \hat{a}^* + \hat{b} \cdot \hat{b}^* + \hat{c} \cdot \hat{c}^*\right)$$
$$= \frac{2\pi}{\left|\hat{G}\right|} \qquad \qquad \left(\therefore \frac{1}{d^2} = \frac{\left|\hat{G}\right|^2}{(2\pi)^2} \right)$$

となる。

結晶系による面間隔とその細胞の体積を表 2.2.1 に示す。

	面間隔	細胞の体積
立方晶系	$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}$	$V = a^3$
正方晶系	$\frac{1}{d^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$	$V = a^2 c$
六方晶系	$\frac{1}{d^2} = \frac{4}{3} \left(\frac{h^2 + hk + k^2}{a^2} \right) + \frac{l^2}{c^2}$	$V = \frac{\sqrt{3} a^2 c}{2} \left(= 0.866 a^2 c\right)$
菱面体晶系	$\frac{1}{d^2} = \frac{(h^2 + k^2 + l^2)\sin^2 \alpha + 2(hk + kl + hl)(\cos^2 \alpha - \cos \alpha)}{a^2(1 - 3\cos^2 \alpha + 2\cos^3 \alpha)}$	$V = a^3 \sqrt{1 - 3\cos^2 \alpha + 2\cos^3 \alpha}$
斜方晶系	$\frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$	V = abc
単斜晶系	$\frac{1}{d^2} = \frac{1}{\sin^2 \beta} \left(\frac{h^2}{a^2} + \frac{k^2 \sin^2 \beta}{b^2} + \frac{l^2}{c^2} - \frac{2hl \cos \beta}{ac} \right)$	$V = abc \sin \beta$
*三斜晶系	$\frac{1}{d^2} = \frac{1}{V^2} \left(S_{11}h^2 + S_{22}k^2 + S_{33}l^2 + 2S_{12}hk + 2S_{23}kl + 2S_{13}hl \right)$	$V = abc\sqrt{1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2\cos \alpha \cos \beta \cos \gamma}$
		*

表 2.2.1 結晶系による面間隔と細胞の体積

 $S_{11} = b^2 c^2 \sin^2 \alpha$ $S_{22} = a^2 c^2 \sin^2 \beta$ $S_{33} = a^2 b^2 \sin^2 \gamma$ $S_{12} = abc^{-2} (\cos \alpha \cos \beta - \cos \gamma)$ $S_{23} = a^2 bc (\cos \beta \cos \gamma - \cos \alpha)$ $S_{13} = ab^{-2} c (\cos \gamma \cos \alpha - \cos \beta)$

2.3. レーザラマン分光法

レーザラマン分光法は半導体の組成や結晶構造的性質をはじめ、歪みや電気 的性質、不純物の振る舞いなど非常に多くの性質を評価することができる。レ ーザ光をプローブとしてもちいるので原則として非破壊であり、さらにレーザ 光は 1µm 径程度まで絞る事ができるので、微細領域の評価も可能となる。し たがって、レーザラマン分光法は微視的で、微細領域の評価が可能な技術であ る。

以下にレーザラマン分光法の原理や、装置と測定方法について述べる。

●レーザラマン分光法の原理

半導体のような試料にレーザ光が照射されると、その光は半導体中のフォノンによって変調(非弾性散乱)される。入射レーザ光と同じ波数を持つ成分はレーリー散乱光と呼ばれ、フォノンのエネルギー分だけ入射光から波数のずれた光をラマン散乱光という。

ラマン散乱光の中にはフォノン 1 個のエネルギー分だけずれた一次のラマン 散乱光、2 個分ずれた二次のラマン散乱光、さらにそれ以上波数のずれた高次の ラマン散乱光成分が含まれる。通常、半導体の評価に用いられるのは一次また は二次のラマン散乱光である。一般的に一次のラマン散乱光でもその強度は入 射レーザの 1/10⁵程度と非常に微弱である。

●レーザラマン分光法の装置と測定方法

図 2.3.2 はレーザラマン分光法で必要な装置の基本的構成を表す。励起レーザ 光としては特にその種類を限定されるわけではなく、ある程度大きなパワーの 得られるレーザ光であれば良い。一般的にはアルゴンレーザや色素レーザが多 く用いられる。上に述べたように半導体からのラマン光は非常に微弱であるか ら、励起レーザ光としては、1 つの波長で少なくとも 400~500mW 程度のパワ ーが必要である。

入射レーザ光は光学レンズによって試料表面に絞られる。ラマン散乱光は集 光レンズによってスリットに集められ、分光器によって導かれる。微弱なラマ ン光を分光する為、分光器としては、通常の分光器を 2 つ組み合わせたダブル モノクロメータあるいは3個組み合わせたトリプルモノクロメータが使われる。 散乱光の検出には通常光電子増倍管が用いられる。これらの基本的構成要素の ほか、入射光や散乱光の電界方向を指定する必要がある場合、すなわち偏光と する必要がある場合には、ポラライザやアナライザが必要となる。またレーザ ラマン分光法による半導体の評価は多くの場合、室温・大気中の測定で十分で あるが、低温やあるいは雰囲気の制御された高温で行う事が必要な事もある。 そのような時には光学用のクライオスタット、または気密性が高くかつ光が散 乱されたり吸収されたりしない容器が必要である。

図 2.3.2 レーザラマン分光法に用いる装置の基本的構成

2.4. 光吸収

バンドギャップ値は伝導に寄与するキャリア濃度の温度依存性から算出する ことが出来るが、光吸収特性から算出したバンドギャップは、その半導体が直 接遷移型バンド構造を有するか間接遷移型かを判別することができるためしば しば用いられている。

以下に光吸収の原理を述べる。

●光吸収測定の原理

光子の持つエネルギーhvが半導体のバンドギャップEgより大きいときには、 価電子帯の電子は直接伝導体に励起される。このような光の吸収を基礎吸収と いい、基礎吸収がはじまる付近を吸収端(absorption edge)という。吸収端の光 の波長をん。とするとそれは

$$\lambda_g = \frac{hc}{E_g}$$

で与えられる。励起過程に対応して半導体における光の吸収はその波長によっ て変化する。

図 2.4.1 基礎吸収の原理

厚さt [cm]の半導体結晶に強度 Io の光が半導体表面から垂直入射したとき、 入射した光の一部は表面で反射される。結晶裏面に達した光も一部が反射され、 残りが透過光として結晶外へ透過する。透過強度を Ir とすると、光の透過率 (transmission) Tは

$$T = \frac{I_T}{I_0} \times 100 \, [\%]$$

で与えられる。また、反射光と入射光の強度比は反射率(reflectance)R である。

半導体結晶の深さ x での光の強度を I とし、dx の深さを透過するとき吸収に

よってーdI だけ弱くなるとするとーdI= α Idx となる。この比例定数 α [cm⁻¹] を吸収係数という。結晶表面 x=0 で I=(1-R)I₀、x=t で I=(1-R)I₀exp(- α t)とすると透過率Tは

$$T = (1 - R)^2 I_0 \cdot \exp(-\alpha t)$$

で与えられる。ある波長の光が大部分、半導体結晶によって吸収されるのは、 結晶表面から 1/α までのところであり、1/αの数倍の厚さの結晶はその波長に対 して実質上不透明となる。

吸収係数 α の実際の測定は、厚さの異なる 2 枚の半導体板 t₁, t₂の各々について透過光 I₁, I₁ の波長を変えて測定する。吸収係数 α は

$$\alpha = \frac{1}{(t_2 - t_1)} \ln \frac{I_{T2}}{I_{T1}}$$

より求める。

直接遷移型の半導体では、 波数ベクトル空間において 価電子帯の極大点と伝導帯 の極小点が共に k=0 にある。 この場合は、吸収係数の2乗 α² は次のように光子エネル ギーhνに比例する。

$$\alpha^2 \propto h v - E_g$$

図 2.4.2 直接遷移半導体と間接遷移半導

一方、間接遷移型の半導体においては、伝導帯の極小点は $k \neq 0$ の点にあり、 格子振動の音子(phonon)の媒介を通して遷移を行う。そのような場合、吸収係 数の平方根 $\alpha^{1/2}$ は次のように光子エネルギー h_{ν} に比例する。

$$\alpha^{\frac{1}{2}} \propto h v - E_{c}$$

直接遷移型と間接遷移型の半導体を区別するためには、吸収係数がhvに対して 2乗に比例するか、平方根に比例するかで行うことができる。

3. 実験方法

基板には各種洗浄処理(アセトン、エタノール、王水、SPM 洗浄)を行った SiO₂/Si 及びガラス板を用いた。真空蒸着法(真空度:5.0×10⁷Torr)にて、市販の ペンタセン粉末 0.0500g を抵抗加熱で昇華し、各基板上に薄膜を形成した。な お、本研究では蒸着時の、薄膜蒸着レートの制御は行っていない。薄膜形成後、 段差計にて膜厚を測定したところ、厚さは約 500nm であった。

得られた薄膜を、AFM による表面観察、各種光学的評価法(X 線回折法、レー ザラマン分光法、光吸収測定法)を用いての評価を行った。さらに電気特性を調 べる為、この薄膜上に Au 電極を形成し、I-V 測定を行った。

4. 実験結果及び考察

●AFM による表面観察

AFM により得られた薄膜表面の画像を示す。薄膜特有のグレインが観測された。SiO₂/Si 基板上の薄膜、glass-plate 基板上の薄膜共にグレインサイズ、形状は不均一で、多数のグレインバウンダリーが観察された。グレインサイズは(a)の方で $0.1~0.3 \mu$ m、(b)の方で $0.2~1.0 \mu$ m であるが、これらは文献に報告されているグレインサイズ (~ 6.0μ m) と比較しても小さい^[10]。

(a)pentacene thin film on glass-plate

(b)pentacene thin film on SiO₂/Si

図 4.1 各基板上に蒸着したペンタセン薄膜の AFM 観察画像

●レーザラマン分光法

図 4.2 にレーザーラマン分光スペクトルを示す。1161,1180,1375 および 1600cm⁻¹において明確なピークが、また 1417,1463 および 1535cm⁻¹において 小さなピークが観測された。

ペンタセンは1162,1181cm⁻¹に C-H 結合角の振動を示す事が知られている^[8]。 また、一般的にベンゼン環を基本とする芳香族炭化水素では1360~1410cm⁻¹(A)、 と 1605~1615cm⁻¹(B)におけるリング振動を、1200~1210cm⁻¹において C-C 結 合角振動を示す。リング振動では(A)のピークは分子構造の1次元性 (chain-like topologies) を、(B)は2次元性 (sheet-like topologies) に対応する^{[16] [17]}。

本研究で形成した薄膜から得られたスペクトルは、1375cm⁻¹において特に強いピークが観測された。これは、ペンタセン分子が一次元的な広がりを持っていることを示唆している。

図 4.2 各基板上薄膜のレーザラマン分光測定結果

●X 線回折

文献で報告されているペンタセン単結晶の安定する分子構造は三斜晶系 (a=7.90,b=6.60,c=16.01Å、α=101.9, β=112.6, γ=85.8°)である^{[11][12]}。表 2.2.1 を用いて X線回折による測定値と理論値の結果を表 4.1 に示す。

bulk phase(001),(002),(003)、thin film phase(001'),(002'),(003')、そして SiO₂ との相互作用が強く出る(110)での強いピークが確認された^{[13][14][15]}。bulk phase は薄膜堆積時、基板温度が高い場合に成長することが知られている^{[13][14]}。本研 究では thin film phase が強く出ていることから、室温で蒸着を行ったことに起 因すると考えられる。

	2θ				d [Å]		
	bulk	Thin film	experiment	intensity	bulk	thin film	experiment
	phase	phase			phase	phase	experiment
glass-plate	6.08 (001)		6.10	1006	14.52		14.47
	12.18(002)		12.25	299	7.26		7.22
	18.31(003)		18.45	105	4.84		4.80
	24.50(004)		—	—	3.63		—
		5.7(001')	5.75	3400		15.49	15.49
		11.4(002')	11.50	717		7.76	7.69
		17.1(003')	17.20	233		5.18	5.15
		22.8(004')	—	—		3.90	—
	19.16(110)		19.20	188	4.63		4.62
SiO2/Si	6.08 (001)		6.10	746	14.52		14.48
	12.18(002)		12.20	204	7.26		7.25
	18.31(003)		18.35	103	4.84		4.83
	24.50(004)		—	—	3.63		—
		5.7(001')	5.70	1772		15.49	15.49
		11.4(002')	11.40	585		7.76	7.76
		17.1(003')	17.20	166		5.18	5.15
		22.8(004')	—	—		3.90	—
	19.16(110)		19.15	502	4.63		4.63

表 4.1 XRD 測定結果と理論値との比較

図 4.4 XRD 測定結果(SiO₂/Si)

●光吸収

図 4.5 に光吸収スペクトルを示す。1.83, 1.97, 2.13, 2.28 および 2.70eV にお いてピークが確認された。ここで 1.83eV における最も強いピークは最高被占有 軌道(HOMO)と最低空軌道(LUMO)との間による遷移と考えられる。すなわち HOMO-LUMO ギャップのエネルギーは 1.83eV であり、これは Si(1.12eV)や GaAs(1.42eV)に代表される無機半導体のバンドギャップに対応すると考えられ ている^{[18][19]}。

図 4.5 各基板上薄膜の光吸収スペクトル

●I-V 測定

I-V 測定の結果、オーミックを示す特性は観測されなかった。この結果は、使用した測定機器の性能を考慮すると、作成した薄膜は1GΩcm以上の抵抗率を 有していることを示唆している。電極間にトラップの原因となるグレイン境界 が非常に多く存在している為であると考えられる。

5. 結論

本研究で真空蒸着法により形成したペンタセン薄膜は、bulk phase よりも、thin film phase の占める割合の方が高い事がわかった。また、薄膜表面観察では、 グレインサイズが小さい事が確認された。これらは室温で蒸着を行ったことに 起因すると考えられる。

薄膜の電気特性は、非常に高い抵抗率を有する事がわかった。 これはグレインサイズが小さい事に起因すると考えられる。また、エネルギー ギャップに相当する HOMO-LUMO ギャップの大きさは 1.83eV だった。

謝辞

本研究を進めるにあたりご指導いただいた、佐藤政孝教授、栗山一男教授、浜 中廣見教授に心から感謝いたします。本研究に対しご協力いただいた宮川晋悟 氏、田口悦司氏、松尾浩氏、鴨下純一氏、石川知成氏、工藤尚宏氏、鈴木優氏、 時田康貴氏に感謝いたします。また、日頃の研究の準備や研究に対する議論を していただいた、法政大学情報電気電子工学科佐藤研究室の上東秀幸氏、黒木 彰浩氏に感謝いたします。最後に、本研究を遂行するにあたって、研究に対す る理解と、惜しみない協力をいただいた私の家族に感謝いたします。

参考文献

- [1] 半導体評価技術 河東田隆 編著 産業図書
- [2] 物理工学実験 15 X 線回折·散乱技術 上 菊田惺志 著 東京大学出版会
- [3] カリティ 新版 X 線回折要論 松村源太郎 訳 株式会社アグネ
- [4] キッテル 固体物理学入門 上 宇野良清・津屋昇・森田章・山下次郎・共訳
- [5] 有機エレクトロニクス 長谷川悦雄 編著 工業調査会
- [6] マクマリー 有機化学概説 児玉三明 訳
- [7] 有機超薄膜エレクトロニクス 岩本光正・工藤一浩・八瀬清志 著 培風館
- [8] JSAP Catalog Number : AP062217 (2006)
- [9] 情報電気電子工学実験(1) 法政大学工学部情報電気電子工学(2006)
- [10] J.Chang, H.Kim, J.Kim, and B.JuJournal of the Korean Physical Society (2003) 42 268
- [11] R.Campbell, J.Robertson, and J.Trotter Acta.Cryst. (1961) 14 705
- [12] R.Campbell, J.Robertson, and J.Trotter Acta.Cryst. (1962) 15 289
- [13] S.Wang, X.Dong, C.Lee, and S.Lee J.Phys.Chem. (2005) 109 9892
- [14] M.Wakatsuchi, H.Kato, T.Yamada, and M.kawai Jpn.J.Appl.Phys. (2005) 44 514
- [15] M.Shtein, J.Mpel, J.Benziger, and S.Forrest Appl.Phys.Lett. (2002) 81 268
- [16] Y.Chua and P.Stair J.Catal. (2003) 213 39
- [17] R.Tarrant, O.Warxchkow, D.McKenzie Vibrational Spectroscopy (2006) 41 232
- [18] S.Park, S.Kim, J.Kim, C.Whang, and S.Im Appl.Phys.Lett. (2002) 80 2827
- [19] K.Kim, Y.Yoon, M.Mun, S.Park, S.Kim, S.Im, and J.Kim Journal of superconductivity (2002) Vol.15 No.6 595