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Abstract
Integration error is analyzed for Verlet’s difference scheme by simulat-
ing the movement of harmonic oscillator as a conservative system. This
scheme gives accurate total ex{ergy through the long-time simulation of
the oscillation, although large error appears in the time development of
position and velocity of it. This is attributed to the angle error of

simulated oscillator in phase space.
1. Introduetion

Verlet’s ‘difference scheme'” (the Verlet algorithm) is one of the
useful methods in integrating the equation of motion for dynamical systems.
The scheme has been used to simulate movement of atoms in the molecular
dynamics simulations not only for classical systems® but also for first-
principle systems.® The feature of it is to have the simple form and to
require only one calculation of force in each time step. This indicates
the reduction of computing time.

No method has been proposed in evaluating integration error for the
equation of motion for dynamical systems. The total energy has been
used as 4 tool for accuracy evaluation in the systems. For instance the

time me%h has been chosen by monitoring the energy. “>®

In a previous
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paper, some results of error analysis has been reported for the scheme by
integrating the equation of motion for a harmonic oscillator.®® Total
energy for the conservative system has been clarified to be inefficient for
detection of the integration error with this scheme: althogh the energy
conseved well during long-time simulation, large error appeared in the
time development of position and velocity of the oscillator.® No origin,
however, has been clarified for the scheme.

In this paper, the origin of the behavior will be clarified. In Sec. 2
computational methods will be given. The origin of the behavior will be
clarified in Sec. 3. Concluding remarks will be presented in Sec. 4.

2. Computational methods

A motion of harmonic oscillator, as a simple case with exact solutions,
has been simulated with Verlet’s scheme’ in order to examine the ac-
curacy of it. The equations of motion for the oscillator with dimensionless

form are

dx(t) _

T =v(®) @)
and

&x(@) _ dv@® _
dt =~ dt
where x(#) is displacement of the oscillator from the equilibrium position

—x(®, 2)

and 2(® is velocity of it at time &
For the Verlet scheme, the time developments of positions x(#) and
velocities #(#) are obtained from

x@+h) =2x(t)—x(t—h)+h2%)—- (3
and
dx(® x@+h)—x(t—h)

EL == - P

’
where % is time mesh for integration. In order to avoid the cancelling
error during iteration, the following modified formulas® have been used
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in the simulations:
2Ct)=2(0)+ é:l x(t) (5)
and
_ 3x(@ws1) +x(tn)
v(tm) - 2h , ( 6 )

where t. is time at m steps ((n=m X k) and 0x(fn)=2(n) —x(#n-1). The
0x(t.) is obtained from

A2x(Em-1)
- e

Initial conditions have been chosen to be #(0)=1 and »(0)=0. These
give exact solutions x.(D=cos (!} and ».(2)=—sin () representing the

ax(tm)=5x(tm—l)+hg

oscillation period is 2z for the system. The amplitude of the oscillation
is =1 for the exact solutions with the conditions. The time mesh A
has been chosen to be 27/100 which corresponds to 1/100 of the period of
the oscillation. The time developments of position x(#) and velocity »(#)
have been simulated by means of the formulas (6) to (7) up to 1X10°
steps. This duration corresponds to the period for 10000 cycles of it.

3. Maximum error and total energy

We examine accumulation behavior of integration error with the
scheme. Figure 1 (a) shows the variation of the energy difference 4E(?)
between the simulated and the exact total energies as a function of time
steps: AE@® = [x*(D+v* D) — (xS @ +v2@) =2*O+v*@)—1. The dif-
ference is shown in the figure up to 5X10° steps. The difference is 0
through the whole time range in the figure. The same relation has been
valid between 5X10° and 1X10° steps. This indicates no drift appears
for the energy in the system with this scheme.

Here let us examine the error on the position x(#) and velocity »(#)
directly in the same time range as Fig. 1(a). Fig. 1 (b) shows the varia-
tion of the maximum error |4x(#)|mex of position as a function of time
steps: |4x(®)mex=max(lx(h) —x.(B)|, |x(Ch)—x.(2k),..., |x@—h)—x.(¢
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o1 -, x@—x.(D)). This is
= (a) the maximum absolute value
§ 0.05- B of the differences between the
0.00 simulated and the exact posi-
T tions up to time £ The error
2.0 () = increases linearly with time
__E in initial time region. It be-
‘? 1.0+ B gins to saturate at around 2.5
= X10° steps and it is constant
0.0 ' between 3X10° and 5x10°
2.04 () B steps. The maximum error
j for the later time region is 2
:?:’ 1.0+ B which is 2 times as large as
= the amplitudes =1 of the

0.0 T osillation.

0 2.5 5.0

steps/10* Figure 1(c) shows the

variation of the maximum

Fig. 1 (a): Variation of the energy dif-
ference 4E(t) between the sim-

ulated and exact total energies as as a function of ti tens:
a function of time steps. (b): unction 1me  Sieps:

error |4v(?)Imax of velocities

Variation of the maximum error
|4 x(t)|max of position up to time
t. (c): Variation of the maxi-
mum error |4v(#)|max of velocity
up to time £

IAv(t)Imax=maX (Iv(h)_vn
W\, 1vh)—v.(283,..., |0t~
D—-v.G¢-ml, @ —v.DI).

This is the maximum absolute

value of the differences between the simulated and the exact velocities up
to time £ The error shows almost the same variation as Fig. 1 (b).
The érror |4v(#)|msx increases linearly with time in initial region. It
begins to saturate at around 2.5X10° steps and it is constant between 3X
10° and 5X10° steps.

which is 2 times as large as the maximum velocity ¥msx=1 of the oscillator.

The maximum error for the later time region is 2

We examine why the total energy is conserved at constant value
even when the large error (200%) appeares on both of the position and
velosity of the oscillator. We clarify the origin in analyzing movement
of the oscillator in phase space. The space, dimension of which is 2D,



Hosei University Repository

17

v v
® b @ %
( a x E ‘ a x

100 steps 100000 steps 304500 steps
w 4 © 4 o 1
:
z x ( 9 z
500000 steps 608500 steps 1000000 steps

Fig. 2 Positions of phase points for the simulated and exact

solutions in phase space at each time step. Filled circle

is for the simulated point and cross mark for the exact

one. Open circle with radius 1 is the trajectory of them.
has abscissa for the position x and ordinate for the velocity o. In the
case of the exact solutions, the phase point rotates on the perfect circle
with radius #=1 around the origin. Since the total energy is given by

square 7* of the radius, the energy is conserved at »*=1 in this case.

Figure 2 shows the positions for the simulated and exact phase points
in the space at each time. Filled circle is for the simulated point and
cross mark for the exact one. Open circle shows the trajectory of the
phase point with radius #=1. For the time 100 steps as shown in Fig.
2 (a), both of the two points locate at the same position (x, Y)=(1, 0) each
other. This indicates no error appears in the simulated x(#) and »(#) at this
time. Figure 2 (b) shows the positions of the points at time 100000 steps.
Although the simulated point (filled circle) is on the trajectory, the
position of it deviates from the exact point (cross mark). This is attributed
to the fact that angular velocity is faster for the filled circle than for
the cross mark. This indicates the error appears in the simulated position
and velocity, although the total energy is conseved at the constant value.
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in The deviation becomes to be

large with simulation time. Figure 2
3x- - (c) shows the positions at #=304500
steps which corresponds to saturation

~

<

NEKZE - time of maximum error in Fig. 1 (b)

® and 1(c). Filled circle in Fig.
7 - 2(c) is located on the trajectory,

showing consevation of the energy.

04 . s It is at opposite site from the cross

0 5 10 mark on the abscissa. This indicates
steps/10° the diff A5 =12B—1. D)
. L e difference dx()=|x(@ —x.
Fig. 3 Variation of angle @ be- n . x
tween the simulated and between the positions is 2 at this
exact phase points around time steps, which is 200% of the
the origin as a function

. amplitude of the oscillator. The
of time steps.

same relation has been varid for the
difference dv(®)=|v(¥)—v.(®)| between velocities at the 304525 steps: filled
circle has been located at opposite site from the cross mark on the ordinate.
This is the reason why the energy is conseved even when the maximum
error becomes 200% for simulated position and velocity: angular velocity
is faster for the simulated point than for the exact one.

Here let us examine difference of angular velocity between the
simulated and the exact phase points of this oscillator. Figure 3 shows
the variation of angle # between the simulated and the exact points around
the origin as a function of time steps. The angle increases linearly with
time through the whole time range, indicating difference of anglular veloci-
ties is constant between the two points. From the figure, the angle &
is found to be 27 at about 600000 steps. This is the time when the two
phase points are located at the same point on the trajectory, as shown in
Fig. 2 (e).

4. Concluding remarks

Integration error has been analyzed for Verlet’s difference scheme by
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simulating the movement of harmonic oscillator up to 1X10° steps (10000
cycles). The maximum error on position has been found to be 200% for
the amplitude of position of the oscillator. The maximum error on
velocity has been the same percentage for the maximum velocity of it
Total energy, however, has been conserved through the whole time range
of the simulation. The origin of the behavior has been examined in
analyzing movement of the oscillator in phase space. This is attributed
to the angle error of simulated phase point, i. e., the angular velocity has
been faster for the simulated point than for the exact point in the space.
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