法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-05-10

過渡熱伝達分布測定による金属欠損の可視化

鈴木, 剛 / SAITO, Yoshifuru / SUZUKI, Goh / 齊藤, 兆古

(出版者 / Publisher) 法政大学情報メディア教育研究センター

(雑誌名 / Journal or Publication Title) 法政大学情報メディア教育研究センター研究報告

(巻 / Volume)

21

(開始ページ / Start Page)

97

(終了ページ / End Page)

96

(発行年 / Year)

2008-03-31

(URL)

https://doi.org/10.15002/00003009

過渡熱伝達分布測定による金属欠損の可視化*

Defect Visualization by Transient Thermal Distributions by Dynamic Infrared Image

鈴木 剛¹⁾, 齋藤 兆古¹⁾ Goh SUZUKI, Yoshifuru SAITO

1)法政大学大学院

In order to realize the reliable inspecting systems, many infrared image sensors are utilized because of their high visual capability not depending on the human visible light condition. Recently, nuclear electric power plant is increasing its usefulness not warm up entire earth system accompanying with human life activity. We are now planning to enhance the infrared inspecting system to carry out the condition based maintenance methodology for nuclear electric power plant. At first, this paper clarifies a relationship between the pixel values constructing infrared image and absolute temperature even though automatic gain control function equipped in infrared CCD camera is activating to get the highest contrast image. Second we demonstrate the absolute temperature visualization, which is the most important inspecting factor in the nuclear power plant, on the bended iron sheet.

Keywords: Infrared image, Condition based maintenance, and Nondestructive testing

1.緒 論

映像情報による診断は、医学の世界などでも用いられているように極めて具体的な状態把握を可能にする.たとえ言語の異なる民族でも、映像情報を用いることで意思疎通が可能となる.このように、人間の視覚情報処理は全地球人類共通の強力な知的機能である.人間は外部から得る情報のなかで80パーセント以上を視覚から取り入れている1).

近年,商品の品質管理・保証のため,赤外線カメラを用いた非破壊検査の技術が実用化されている
2). 現代文明を支える多くの構造物は鉄を主体とする構造材で構成されている.構造物の非破壊検査は、言うまでもなく人工的構築物の根幹を支える構造体の検査であり、その重要性は人類文明そのものを支える基幹技術と言える.例えば原子炉の熱交換器などでは渦電流(ECT)による非破壊検査が広汎に用いられている.ECT は非磁性体金属に対して極めて効果的な検査手段であるが,磁性体に対しては解決すべき課題が残されている.

原稿受付 2008 年 2 月 29 日 発行 2008 年 3 月 31 日

法政大学情報メディア教育研究センター

本論文では、磁性体を含むあらゆる種類の金属材料を検査対象とする非破壊検査法の一方法を提案する、検査対象である金属の過渡温度上昇分布動画像を赤外線ビデオカメラで撮影し、赤外線動画像から絶対温度上昇分布動画像を再構成することで、金属中の欠損やシステム欠陥箇所を可視化する方法を検討する、その結果、検査速度

は ECT に比較して低下するが,被検査対象である 金属の材質に依存せず、連続監視を可能とする高度 な CBM (Condition Based Maintenance) 技術の 一方法の開発へ繋がる.

2.赤外線カメラ

本実験において使用した赤外線カメラは「三菱サーマルイメージャ(形式 IR-SC 1 三菱電機株式会社)」である.

赤外線画像は対象物の温度分布をモノクロ濃淡情報として表示するものであり、温度の高い部分を白色、温度が低い部分を黒色で可視化する、温度の高低に伴う白黒濃淡の情報を高コントラスト化するために、殆ど全ての赤外線 CCD カメラではAGC(Automatic Gain Control, 対象物の赤外線画像中において支配的温度に合わせて出力、感度を自動制御する機能)が組み込まれている³¹、これは相対的な温度分布可視化には有効であるが、絶対的な温度

分布可視化を不可能にする.可動部分や動力源を含むシステムにおいては、相対的な温度分布よりも遙かに絶対的温度分布が有意義である.これは、多くの機器は特定の許容絶対温度内で正常に機能すべく設計されていることから自明である.

以上の事から、単純な赤外線可視化画像から各種機器の適正動作温度を前提とする高精度連続監視システム構築は困難である.

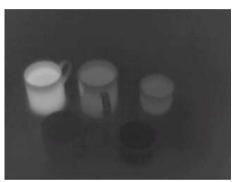


Fig.1 Infrared cup images containing different temperature water.

本論文では,赤外線カメラを使用して撮影された 赤外線動可視化画像をコンピュータの論理的演算 機能を利用して絶対温度動分布可視化画像へ変換 する.さらに、具体例として、誘導加熱された鉄板 の絶対温度分布可視化画像例を示す.

Fig. 1 は 5 種類の異なる温度の湯を入れたコップの赤外線画像である.それぞれのお湯の温度は、上方、左から順に 46 .4 、29 .0 、25 .2 、下方、左から 15 .7 、12 ,8 である . 赤外線 CCD カメラの ACG 機能が有効に機能し、高温から低温のお湯まで最大コントラストで可視化している .

それぞれのお湯の表面画像を構成する画素値は、高温から順に、180,101,87,52,43 となり、絶対温度と画素値は比例しないことが判る.従って、赤外線画像から対象物の相対温度分布は可視化可能であるが、絶対温度分布の可視化はサーモグラフィの様に温度測定に特化した機器以外は不可能である.通常の CCD (Charge Coupled Device) であっても、赤外線波長領域に於ける光エネルギーの入射によって電荷移動が励起されることから、赤外線 CCD から正確な絶対温度画像がされるとすれば、遙かに低コストで汎用性に富む CBM 用絶対温度センサシステム構築が可能となる.

以上の状況を鑑み、ここでは画素値と絶対温度の関係を明らかにする.多くの自然科学の問題では、温度上昇などは指数関数的に時間に対して変化する。このため、ここでは赤外線画像を構成する画素値と絶対温度の関係も指数関数的に関係すると仮定し、Fig.2 に示すように両者を両対数グラフヘプ

ロットする.

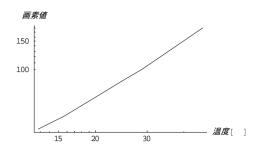


Fig. 2 Temperature versus pixel value relation

Fig.2 から明らかに画素値と温度関係は指数関数であり、この関係を利用して通常の赤外線画像から絶対温度可視化画像を得ることが可能とされる.

3. 欠損と温度変化

鉄の欠損を想定し,歪みを持つ Fig.3 に示す珪素鋼板を用意する.歪み部分を平面ドーナツ状励磁コイル上に置き、誘導加熱した.加熱状態を赤外線画像として取り込み,Fig3の赤枠部分の画素値分布をカラー表示した結果を Fig.4 に示す.赤部分が最も高温を示し、オレンジ色に近づくにつれ低温を示す.

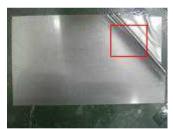


Fig.3 Silicon Steel Sheet with Bending at an Edge

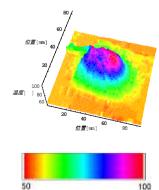


Fig.4 Absolute Temperature Distribution of the Iron Sheet shown in Fig.3

4.まとめ

本論文では、赤外線 CCD カメラ並びに赤外線画

像の特徴を述べ、それらを用いた絶対温度分布測定 法を提案し、具体例を示した.その結果、赤外線カ メラを用いた絶対温度監視システム構築の一端が 開けた.

参考文献

- 1)中島 龍興,近田 玲子,面出 薫:照明デザイン入 門,彰国社(1955)
- つ、「ショ社(1995) 2) 臼田優、早野誠治、齋藤兆古、堀井清之:電子回路 基盤の赤外線可視化画像モーダルウェブレット 解析、第33回可視化情報シンポジウム B 203 工 学院大学 2005 年 7 月 26 日 3) 堀川岳洋:赤外線動画像からの熱情報の抽 出、2003 年度法政大学卒業論文