法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2024-07-27

A proof of the normalization theorem for $\lambda \rho$ -calculus

安東, 祐希 / ANDOU, Yuuki

```
(出版者 / Publisher)
法政大学文学部
(雑誌名 / Journal or Publication Title)
Bulletin of Faculty of Letters, Hosei University / 法政大学文学部紀要
(巻 / Volume)
50
(開始ページ / Start Page)
1
(終了ページ / End Page)
5
(発行年 / Year)
2005-03-01
(URL)
https://doi.org/10.15002/00002925
```

A proof of the normalization theorem for $\lambda \rho$ -calculus

ANDOU Yuuki*

1 Introduction

There are some different ways for formalizing classical logic. One of those uses Peirce's rule, which states that if $A \supset B$ implies A, then we have A without the assumption $A \supset B$. This rule contains only implication as the logical connectives, therefore it is suitable for the implicational fragment of classical logic. Komori [3] introduced a system of calculus named $\lambda \rho$ -calculus, whose type assignment system corresponds with the implicational fragment of classical natural deduction formalized with Peirce's rule. He also defined a set of contractions on $\lambda \rho$ -calculus, and stated the normalization theorem in his paper mentioned above. But according to his recent research [4], any direct proof of the weak normalization theorem has not yet known, although he already proved the strong one. In this note, we prove the weak normalization theorem for Komori's $\lambda \rho$ -calculus with the definition of an appropriate degree of deductions. The proof is similar to that of our former paper [1] for full classical natural deduction formalized with classical absurdity rule. To define the degree of deductions for $\lambda \rho$ -calculus, which measures redexes, we have to find segment of formula-occurrences as in the case of intuitionistic logic by Prawitz [5, 6]. We use Hindley's notations [2] for λ -calculus basically, and those of Komori for $\lambda \rho$ -calculus.

^{*}Department of Philosophy, Hosei University, Tokyo 102-8160, Japan. E-mail: norakuro@i.hosei.ac.jp

2

2 Komori's $\lambda \rho$ -calculus

In this section, we state some basic definitions of Komori's $\lambda \rho$ -calculus according his paper [3]. See it for more details.

Definition ($\lambda \rho$ -terms) Two infinite sequences of variables are assumed to be given, named λ -variables and ρ -variables, and $\lambda \rho$ -terms are defined inductively as follows.

- Each λ -variable is a $\lambda \rho$ -term.
- If M and N are $\lambda \rho$ -terms, then (MN) is a $\lambda \rho$ -term.
- If a is a ρ -variable and M is a $\lambda \rho$ -term, then (aM) is a $\lambda \rho$ -term.
- If x is a λ -variable and M is a $\lambda \rho$ -term, then $(\lambda x.M)$ is a $\lambda \rho$ -term.
- If a is a ρ -variable and M is a $\lambda \rho$ -term, then $(\rho a.M)$ is a $\lambda \rho$ -term.

Definition ($\rho\beta$ -contractions) $\rho\beta$ -contractions, or re-write rules from $\rho\beta$ -redexes to their contractums are defined as follows.

- $aMN >_{1\rho\beta} aM$
- $(\lambda x.M)N \rhd_{1\rho\beta} [N/x]M$
- $(\rho a.M)N \triangleright_{1\rho\beta} \lambda a.([\lambda x.a(xN)/a]M)N$

Definition (Types) An infinite sequence of type-variables is assumed to be given, and types are defined inductively as follows.

- Each type-variable is a type.
- If σ and τ are types, then $(\sigma \to \tau)$ is a type.

Definition (The system $TA_{\lambda\rho}$) The type-assignment system $TA_{\lambda\rho}$ is defined as follows.

Axiom of $TA_{\lambda 0}$:

$$x: \tau \mapsto x: \tau$$

Deduction-rules of TA_{do}:

$$\frac{\langle \Gamma_1; P: (\sigma \to \tau) \rangle \langle \Gamma_2; Q: \sigma \rangle}{\langle \Gamma_1 \cup \Gamma_2; (PQ): \tau \rangle} \; (\to E) \quad \text{[if } \Gamma_1 \cup \Gamma_2 \text{ is consistent],}$$

$$\frac{\langle \Gamma; P: \tau \rangle}{\langle \Gamma - x; (\lambda x. P): \sigma \to \tau \rangle} \; (\to I) \quad \text{[if } \Gamma \text{ is consistent with } x: \sigma \text{],}$$

$$\frac{\langle \Gamma; P: \tau \rangle}{\langle \Gamma, a: \tau; (a. P): \sigma \rangle} \; (Absurd) \quad \text{[if } \Gamma \text{ is consistent with } a: \tau \text{],}$$

$$\frac{\langle \Gamma; P: \tau \rangle}{\langle \Gamma - a; (\rho a. P): \tau \rangle} \; (Rati) \quad \text{[if } \Gamma \text{ is consistent with } a: \tau \text{].}$$

3 normalization

In order to define the degree of $TA_{\lambda\rho}$ -deduction used in the proof of the normalization theorem, we first introduce a measure for terms, which represents the maximal length of the corresponding segment in natural deduction.

Definition (rank of terms) For each $\lambda \rho$ -term P, we define the rank r(P)inductively as follows.

- If P is of the form x, MN, aM, or $\lambda x.M$, then r(P) is 1.
- If P is of the form $\rho a.M$, then r(P) is

$$\max \left\{ r(M), \max_{Q} \{ r(Q) \} \right\} + 1,$$

where Q varies all terms such that aQ is a subterm of M.

4

Definition (degree of $TA_{\lambda\rho}$ -**deductions)** Let Δ be a $TA_{\lambda\rho}$ -deduction of the $TA_{\lambda\rho}$ -formula $\langle \Gamma, T, \tau \rangle$. First, we define an ordered pair of natural numbers denoted by $d_0(\Delta)$ as follows. If M is $\rho\beta$ -normal then $d_0(\Delta)$ is $\langle 0, 0 \rangle$, otherwise,

$$d_0(\Delta) = \max\{\langle |\delta|, r(P)\rangle \mid \underline{PN} \text{ is a } \rho\beta\text{-redex-occurrence in } T \text{ and } \underline{P} \text{ has type } \delta \text{ in } \Delta. \},$$

where $|\delta|$ is the length of δ , defined in [2], that is the total number of occurrences of type-variables in δ . Two ordered pairs as the values of d_0 are compared by lexicographical order. Next we define a natural number denoted $d_1(\Delta)$ as the number of $\rho\beta$ -redex-occurrences, say \underline{PN} , in T, which satisfies $\langle |\delta|, r(P)\rangle = d_0(\Delta)$ where \underline{P} has type δ in Δ . Finally, we define the degree of Δ denoted by $D(\Delta)$ as below.

$$D(\Delta) = \langle d_0(\Delta), d_1(\Delta) \rangle$$

We also compare two values of D by lexicographical order.

Theorem (Normalizabilty of typable terms) If a $\lambda \rho$ -term has a type in $TA_{\lambda \rho}$, then it is $\rho \beta$ -normalizable.

Proof Let Δ be a given $TA_{\lambda\rho}$ -deduction of $\langle \Gamma, T, \tau \rangle$ which is not $\rho\beta$ -normal. We call E the set of all $\rho\beta$ -redex-occurrences \underline{PN} in M which satisfies that $\langle |\delta|, r(P) \rangle$ is equal to $d_0(\Delta)$ where \underline{P} has type δ in Δ . Take one element of E, say $\underline{P_0N_0}$, such that there is no element of E in $\underline{N_0}$. Suppose T $\rho\beta$ -contracts to T_1 by replacing $\underline{P_0N_0}$ by its contractum, that is, $\langle T, \underline{P_0N_0}, T_1 \rangle$. If P is of the form aM or $\lambda x.M$, then define $T' \equiv T_1$. Otherwise, that is P_0 is a ρ -abstract, say $\rho a.M$, execute a $\rho\beta$ -contraction of T_1 with one of the redexes created by the substitution for a in M if there is an occurrence of a in M, and by repeating such $\rho\beta$ -contraction, take one $\rho\beta$ -reduction

$$\langle T_1,\underline{R_1},T_2\rangle,\langle T_2,\underline{R_2},T_3\rangle,...,\langle T_n,\underline{R_n},T_{n+1}\rangle$$

if there are exactly n occurrences of a in M. In this case, define $T' \equiv T_{n+1}$. Let Δ' be the $TA_{\lambda\rho}$ -deduction of $\langle \Gamma', T', \tau \rangle$ corresponding with Δ . Then we have $d(\Delta) > d(\Delta')$ by definition. Therefore, by transfinite induction on ω^3 , it holds that every typable $\lambda\rho$ -term is $\rho\beta$ -normalizable.

References

- [1] Y. Andou, A normalization-procedure for the first order classical natural deduction with full logical symbols, Tsukuba J. Math. 19 (1995) 153-162.
- [2] J. R. Hindley, Basic simple type theory (Cambridge University Press, Cambridge, 1997).
- [3] Y. Komori, λρ-calculus: A natural deduction for classical logic, Bulletin of the Section of Logic 31/2 (2002) 65-70.
- [4] Y. Komori, Normalizability and confluency of the reductions for proof figure of classical logic (in Japanese), a talk at the conference of the Mathematical Society of Japan (Sapporo, September 2004).
- [5] D. Prawitz, Natural deduction A proof theoretical study, (Almqvist & Wiksell, Stockholm, 1965)
- [6] D. Prawitz, Ideas and results in proof theory, in: Proceedings of the Second Scandinavian Logic Symposium, 235-307, (North-Holland, Amsterdam, 1971)