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We construct a phenomenological three-nucleon force (3NF) model that gives a good description of polarization
observables in elastic nucleon-deuteron (N -d) scattering at a low energy together with a realistic nucleon-nucleon
force and a 3NF arising from the exchange of two pions. Parameters of the model, which consists of spin-
independent, spin-orbit, and tensor components, are determined to reproduce the three-nucleon binding energy
and polarization observables in N -d scattering at 3 MeV. Predictions of the 3NF model on N -d polarization
observables at higher energies are examined, and the effects of each component on the observables are investigated.
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As is well known, modern two-nucleon force (2NF) models
have a deficiency in explaining the binding energies of
three-nucleon (3N) systems, and this problem is successfully
solved by introducing a 3NF arising from the exchange
process of two pions among three nucleons, which is called
the two-pion-exchange (2πE) 3NF [1,2]. However, such
combinations of the 2NFs and the 2πE-3NF that reproduce
the 3N binding energy do not necessarily explain polarization
observables in 3N scattering systems such as vector or tensor
analyzing powers in elastic N -d scattering. See, e.g., Table
III of Ref. [3], where calculations of observables with and
without a 2πE-3NF are compared in terms of χ2 with
experimental data below 30 MeV of incident nucleon energy
in the laboratory system. In spite of recent progress in
constructing realistic 3NFs from chiral effective field theory or
from heavier-boson-exchange mechanisms, no consensus has
been obtained for possible mechanisms of 3NFs consistent
with all of the experimental data. On the other hand, model
3NFs with artificial functional forms have been proposed to
explain the polarization observables quite well [4–6]. These
3NFs have a form that typical components in 2NFs, e.g.,
central spin-independent, tensor, or spin-orbit components,
are modified in the presence of third nucleon. [See Eq. (1)
below.]

In this paper, we introduce such a phenomenological 3NF
to resolve the discrepancies of a 2NF and the 2πE-3NF at a
low energy, and we examine whether it is still valid for N -d
observables at higher energies up to 30 MeV. Since it may not
be so difficult to understand what physical process is simulated
by the spin dependence of each component, we expect that the
present study will provide some hint of which characteristics
of more realistic 3NFs should be studied.

Our 3N calculations are based on a formalism to solve the
Faddeev equations in coordinate space as integral equations
[7,8]. For scattering states below the 3N breakup threshold
energy, effects of the long-range Coulomb force between two
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protons are exactly treated [9]. Calculations for energies above
the 3N breakup threshold are formulated in Ref. [10]. 3N
partial wave states for which 2NFs and 3NFs act, are restricted
to those with total two-nucleon angular momenta j � 6
for bound state calculations, and j � 3 for scattering state
calculations. The total 3N angular momentum is truncated
at J = 19/2, while 3NFs are switched off for 3N states
with J > 9/2. These truncating procedures are confirmed
to give converged results for the purposes of the present
work.

We use the Argonne V18 model (AV18) [11] for the
realistic 2NF and the Brazil model (BR) [2] for the 2πE-3NF.
Calculated triton binding energies with models used in this
work are tabulated in Table I. The AV18 calculation underbinds
the triton by about 0.9 MeV. The introduction of the 2πE-3NF
produces enough attraction to remedy the defect, but it strongly
depends on the choice of cutoff parameter in the πNN form

factor. We choose a dipole form factor, (�2−m2
π

q2+�2 )2, where q is
the momentum of the exchanged pion, mπ the pion mass, and
� the cutoff mass. The choice of � = 800 MeV ≈ 5.8mπ

(BR800), which is close to a value cited in Refs. [2,12,13] to
explain the Goldberger-Treiman discrepancy, overshoots the
triton binding energy by about 0.9 MeV. It turns out that the
binding energy is reproduced when we take � = 680 MeV ≈
4.9mπ (BR680). This rather small value of � may be
considered as the result of incorporating unknown 3NF
effects.

As examples to demonstrate the effects of 3NFs at low
energy, we show our calculations for the proton vector
analyzing power Ay(θ ) and the deuteron tensor analyzing
power T21(θ ) in elastic proton-deuteron (p-d) scattering at
Ep = 3.0 MeV (or Ed = 6.0 MeV) in Fig. 1, comparing
them with experimental data [14,15]. Deficiencies of the
AV18 calculations in reproducing the data prominently appear
as a smallness for the maximum of Ay(θ ) at θ ≈ 100◦
and as an excess for the local minimum of T21(θ ) at θ ≈
80◦. The AV18+BR800 and the AV18+BR680 calculations,
which almost agree, demonstrate that the 2πE-3NF partially
remedies the deficiency of the Ay maximum but worsens that
of the T21 minimum. In Ref. [5], the latter effect was shown to
arise from a tensor component in the 2πE-3NF.
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TABLE I. Empirical value and calculated values
of the triton binding energy (B3). See the text for the
description of the models.

Model B3 (MeV)

Empirical 8.482
AV18 7.626
AV18+BR800 9.380
AV18+BR680 8.493
AV18+BR800+C+T+SO 8.478
AV18+BR680+SO 8.444

Now we consider a phenomenological 3NF to improve the
results of AV18+BR800 in Fig. 1 in the following form [4–6],

V =
∑

i<j

e
−(

rik
rG

)2−(
rjk

rG
)2{V0 + VT ST (ij )P̂ 11(ij )}

+Vlse
−αρ

∑

i<j

[lij · (Si + Sj )]P̂ 11(ij ), (1)

where ST (ij ) is the tensor operator acting between nucleon pair
(i, j ), P̂ 11(ij ) the projection operator to the spin and isospin
triplet state of the (i, j ) pair, and ρ2 = 2

3 (r2
12 + r2

23 + r2
31).

In the present work, the range parameter rG is taken to be
1.0 fm as in Refs. [5,6], and α to be 1.5 fm−1, which is the
shortest one in Ref. [4]. The parameters for the strength of
the central spin-independent component (C) V0, the tensor
component (T) VT , and the spin-orbit component (SO) Vls

are determined to reproduce the triton binding energy and the
observables in Fig. 1 as follows: In Ref. [6], it is reported
that one can simulate the 2πE-3NF by Eq. (1) with a
choice of (V0, VT ) = (−38 MeV,+20 MeV), and then get
a remarkable improvement in T21(θ ) by changing the sign of
VT and readjusting V0 to fit the triton binding energy. Thus,
in the present case, we choose the variation −20 − (+20) =

(a) (b)

FIG. 1. (Color online) (a) Proton vector analyzing power Ay(θ )
and (b) deuteron tensor analyzing power T21(θ ) in p-d scattering
at Ep = 3.0 MeV (Ed = 6.0 MeV). Dotted (blue) curves
denote the AV18 calculations; dashed (red) curves, AV18+BR800;
dotted-dashed (green) curves, AV18+BR680; solid (black) curves,
AV18+BR800+C+T+SO. Solid circles are experimental data from
Refs. [14,15].

−40 MeV for the value of VT to improve T21(θ ) in addition
to AV18+BR800. Hereafter, we call this procedure tensor
inversion. The strength of the spin-orbit component Vls is
determined to be −16 MeV to reproduce Ay(θ ) at 3.0 MeV.
Finally, the strength of the spin-independent component V0 is
determined to reproduce the triton binding energy. The values
obtained are (V0, VT , Vls) = (+25,−40,−16 MeV). The
results of this 3NF (AV18+BR800+C+T+SO) are displayed
as the solid curves in Fig. 1.

We note here that the C-3NF plays an essential role in
reproducing the binding energy to get the repulsive effect
against the large attraction from the BR800-3NF. To the total
repulsion of about 0.90 MeV by the C+T+SO-3NF (see
Table I), the C-3NF contributes about 0.62 MeV, the T-3NF
about 0.24 MeV, and the SO-3NF 0.05 MeV.

To understand the role of the tensor inversion, we make
another model 3NF so that Ay(θ ) at 3.0 MeV is reproduced
with AV18+BR680 plus Eq. (1) with V0 = VT = 0, which will
be denoted as AV18+BR680+SO. In this case, the strength
of the SO term becomes Vls = −21 MeV. Since the effect
of the SO-3NF on the triton binding energy is rather small,
about 0.05 MeV of repulsive contribution, AV18+BR680+SO
reproduces the binding energy as well. In Fig. 1, the results of
AV18+BR680+SO are not plotted because they coincide with
the AV18+BR800+C+T+SO calculation for Ay(θ ) and with
AV18+BR680 for T21(θ ). Note that the latter demonstrates that
the SO-3NF has only a minor effect on T21(θ ).

In Fig. 2, we show the results of calculations of the
tensor analyzing power T21(θ ) in elastic neutron-deuteron
(n-d) scattering at En = 28.0 MeV (or Ed = 56.0 MeV)
compared with p-d data at the corresponding energy [16],
for which the effect of the Coulomb force may be small
as shown in Ref. [3]. In this energy, the AV18 calculation
looks to be almost in agreement with the data. However, the

FIG. 2. (Color online) Deuteron tensor analyzing power T21(θ ) in
N -d scattering at EN = 28.0 MeV (or Ed = 56.0 MeV). Calculations
are for n-d: dotted (blue) curve denotes the AV18 calculation;
dashed (red) curve AV18+BR680+SO; dotted-dashed (green) curve
AV18+BR680; solid (black) curve AV18+BR800+C+T+SO. Solid
circles are experimental data for p-d scattering from Ref. [16].
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FIG. 3. (Color online) Neutron vector analyzing power Ay(θ )
in n-d scattering. Dotted (blue) curves denote the AV18 calcula-
tions; dashed (red) curves, AV18+BR680+SO; solid (black) curves,
AV18+BR800+C+T+SO. Experimental data are from Ref. [17] for
5.0 MeV; Ref. [18] for 10.0; Ref. [19] for 14.1; Ref. [20] for 16.0;
and Ref. [21] for 30.0.

introduction of the 2πE-3NF destroys the fit as demonstrated
by the dotted-dashed curve. The small difference between
AV18+BR680 and AV18+BR680+SO shows that the SO-3NF
plays only a minor role in this observable as well as for 3.0
MeV. On the other hand, the tensor inversion effect almost
cancels the unfavorable effect due to the 2πE-3NF. Note that
the effect of the tensor inversion in this energy is different
from that in 3.0 MeV, which overshoots the effect of 2πE-3NF,
although both effects are favorable in explaining the data. This
difference may occur because of a partial cancellation between
the effect of the C-3NF and that of the T-3NF at higher energies.

In Fig. 3,we plot results of the neutron vector analyzing
power Ay(θ ) in n-d scattering compared with available
experimental data at several energies up to 30 MeV [17–21].
First, we take an overview of the energy dependence in the
Ay(θ ) angular distribution. For lower energies, Ay(θ ) has a
single peak at θ ≈ 100◦. As the energy increases, the angle
where Ay(θ ) takes the maximum, θmax, increases gradually up
to about 140◦ at En = 30 MeV, and a plateau region appears at
θ ≈ 90◦ for En � 10 MeV developing into a local minimum.

Failures of the AV18 calculations in reproducing the
minimum and maximum of the Ay(θ ) data are well recovered
by the AV18+BR800+C+T+SO and the AV18+BR680+SO
calculations. This is essentially because of the contribution
from the SO-3NF.

A closer look at Fig. 3 shows that the AV18+BR800+
C+T+SO and the AV18+BR680+SO calculations equiv-
alently reproduce the Ay maximum, but they display a
difference at higher energies for angles 80◦ � θ � 120◦,
where Ay(θ ) has the local minimum. To emphasize this, we
plot in Fig. 4 the values of Ay(θ ) at θ = 90◦ and those
at θmax as a function of the incident neutron energy En,
comparing them with values extracted from the experimental
data [17–21]. This figure clearly shows that the effect of the
SO-3NF, which is displayed by the difference between the
AV18+BR680 and the AV18+BR680+SO calculations, tends

FIG. 4. (Color online) Neutron vector analyzing power Ay(θ )
at θ = 90◦ and θ = θmax in n-d scattering. Dotted (blue)
curves denote the AV18 calculations; dotted-dashed (green) curves,
AV18+BR680; dashed (red) curves, AV18+BR680+SO; solid (black)
curves, AV18+BR800+C+T+SO. Points are calculated from exper-
imental data [17–21].

to improve Ay(θ ) dominantly at both angles. On the other
hand, the tensor inversion effect, displayed by the difference
between AV18+BR680+SO and AV18+BR800+C+T+SO, is
small at θmax, but gives a nonnegligible contribution at θ = 90◦
as the energy increases, which works in the same direction as
the SO-3NF.

As an another interesting example, we pick up nucleon-
to-nucleon polarization transfer coefficients in the �N + d →
�N +d reaction, Kx ′

x (θ ),Ky ′
y (θ ),Kz′

z (θ ),Kz′
x (θ ), and Kx ′

z (θ ). In
Fig. 5, calculations of these observables at En = 19.0 MeV
for 60◦ � θ � 140◦, where calculations of different models
scatter, are displayed and compared with experimental data of

(a) (b)

(c) (d)

FIG. 5. (Color online) Nucleon-to-nucleon polarization transfer
coefficients (a) Kx′

x (θ ), (b) Ky′
y (θ ), (c) Kz′

z (θ ), and (d) Kz′
x (θ ) (upper)

and Kx′
z (θ ) (lower) in N -d scattering at EN = 19.0 MeV. Calculations

are for n-d: dotted (blue) curves denote the AV18 calculations;
dotted-dashed (green) curves, AV18+BR680; dashed (red) curves,
AV18+BR680+SO; solid (black) curves, AV18+BR800+C+T+SO.
Open circles in (b) are experimental data for n-d Ky′

y (θ ) [22]; solid

circles in (b), p-d Ky′
y (θ ) [23]; solid circles in (d), p-d Kx′

z (θ ) [23].
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K
y ′
y (θ ) for n-d scattering [22] and those of K

y ′
y (θ ) and Kx ′

z (θ )
for p-d scattering [23].

For K
y ′
y (θ ), the calculations and n-d data show tendencies

similar to those of T21(θ ) in Fig. 2, namely, the smallness of
the SO-3NF effect and the partial cancellation of the 2πE-3NF
effect by the tensor inversion. It is likely that the tensor
inversion effect works nicely in reproducing the n-d data.
However, the position of the n-d data point at θ = 110◦ in
Fig. 5(b), which is above the p-d data point, is contradictory
to the Kohn variational principle calculations with or without
including a Coulomb force effect [24]. Therefore, it is not
conclusive whether the tensor inverse effect is favorable until
more experimental data are accumulated and/or Coulomb
effects are fixed.

Figure 5 displays another features of the observables:
Kx ′

x (θ ) and Kz′
z (θ ) reveal the dependence on both the tensor

inversion and the SO-3NF. On the other hand, Kz′
x (θ ) and

Kx ′
z (θ ) do a scaling behavior, i.e., the results with models that

equally reproduce the triton binding energy almost agree with
each other.

Some of these characteristics may be understood in the
following way: In Ref. [25], N -d observables Kx

x (θ ), etc.,
are analyzed in terms of N -d scattering amplitudes, which
are decomposed into scalar, vector, tensor, etc., in spin space.
Analyses in Appendix B 8 of Ref. [25] show that Kz

x(θ ) and
Kx

z (θ ) are proportional to both vector and tensor components
in N -d amplitudes, which are sensitive to spin-orbit and tensor
forces, respectively, and that Kx

x (θ ) and Kz
z (θ ) are governed by

scalar components leading to the scaling behavior because of
their sensitivity to the overall attraction of the nuclear forces.
Note that we deal with two different sets of the observables
referring to two different coordinate systems: (x, y, z) and
(x ′, y ′, z′). The former (latter) system is defined so that the z

axis (z′ axis) is oriented in the direction of the beam (observed)
particle. In the N -d elastic scattering, a scattering angle of
θ = 120◦, around which we are interested in, corresponds to a
scattering angle of 90◦ in laboratory system. In this particular
angle, it is easily shown that relations: x̂

′ = −ẑ, ŷ
′ = ŷ, and

ẑ
′ = x̂ hold, and thus we have, Kx ′

x (θ ) = −Kz
x(θ ),Kz′

z (θ ) =
Kx

z (θ ),Kz′
x (θ ) = Kx

x (θ ), and Kx ′
z (θ ) = −Kz

z (θ ). This lead
to the features of Kx ′

x (θ ),Kz′
z (θ ),Kz′

x (θ ), and Kx ′
z (θ ) around

θ = 120◦ are originated from as reflections of those of
Kz

x(θ ),Kx
z (θ ),Kx

x (θ ), and Kz
z (θ ), respectively.

Final examples of observables that are sensitive to our
model 3NFs are spin-dependent total cross section differences
in �n − �d scattering, �σL and �σT [26,27]. These observables
are particularly interesting because they are related directly
to the imaginary part of n-d scattering amplitudes at forward
angle by the optical theorem. In Fig. 6(a), we show calculations
of �σL and �σT as well as recent measurements of �σL [26].
In Ref. [27], it is pointed out that the difference �σT −�σL is
proportional to the imaginary part of a tensor component in the
n-d scattering amplitudes at forward angle. As Fig. 6(b) shows,
the calculations of the difference for AV18+BR800+C+T+SO
and AV18+BR680+SO are opposite to those of the AV18 cal-
culation, which means the tensor inversion effect is observed
clearly. Thus, precise measurements of these observables are
of interest in obtaining information about tensor components
in 3NFs.

(a) (b)

FIG. 6. (Color online) (a) Spin-dependent cross section differ-
ences, �σL and �σT , and (b) their difference �σT − �σL. Dotted
(blue) curves denote the AV18 calculations; dotted-dashed (green)
curves, AV18+BR680; dashed (red) curves, AV18+BR680+SO; solid
(black) curves, AV18+BR800+C+T+SO. Experimental data of �σL

are from Ref. [26].

In summary, we have studied the effects of spin dependence
in nuclear interactions on N -d polarization observables using a
3NF model to be added to the Argonne V18 2NF and the Brazil
2πE-3NF. The 3NF model consists of spin-independent, spin-
orbit, and tensor components, which are essential in reproduc-
ing the 3N binding energy, the proton vector analyzing power
Ay(θ ), and the deuteron tensor analyzing power T21(θ ) in p-d
scattering at 3 MeV, respectively. Effects of the 3NF model
on some N -d polarization observables at higher energies are
examined. The spin-orbit component in the 3NF model plays
a significant role in reproducing Ay(θ ). The tensor component
has nonnegligible effects in T21(θ ≈ 90◦), Ay(θ ≈ 90◦), and

K
y ′
y (θ ≈ 120◦), although we need more experimental data

to confirm whether its effect is favorable. Kx ′
x (θ ≈ 120◦)

and Kz′
z (θ ≈ 120◦) depend on both the spin-orbit and the

tensor components. Effects of the tensor component are clearly
seen in the spin-dependent n-d cross section differences.
Thus, further experimental studies of these observables are
expected to improve our knowledge of the spin dependence of
three-nucleon forces.

If the 3NF model presented in this work really is successful
in explaining all the experimental data, it would be interesting
to see what kind of realistic 3NFs are simulated by it. In
Ref. [28], an examination of 3NFs arising from the exchange
of a pion and a scalar object, such as σ and ω, or a scalar
part of two-pion exchange demonstrates that these 3NF types
indicate tensor inversion effects that are qualitatively but
not quantitatively similar to those of our 3NF model. Of
course, this is not conclusive because of the large amount
of uncertainty in the description of such processes, and further
study is required.

The numerical calculations were supported by Research
Center for Computing and Multimedia Studies, Hosei Univer-
sity, under Project No. lab0003.
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D. Hüber, and H. Witała, Phys. Rev. C 57, 484 (1999).

[23] L. Sydow, S. Lemaitre, P. Niessen, K. R. Nyga, G. Rauprich,
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