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We derive relation formulas for proton depolarizations in proton-3He (p-3He) elastic scattering in a form
that makes it easy to identify contributions of spin-dependent interactions. The formulas explain approximate
relations found in the depolarizations measured at Ep = 800 MeV when the magnitudes of scattering amplitudes
due to p-3He spin–spin and tensor interactions are small. This nature of the interactions is investigated from the
viewpoint of folding models. It is shown that the spin–spin and tensor interactions are significantly diminished
owing to characteristics of nucleon densities of 3He, which are calculated from a solution of the Faddeev equation.
A folding model calculation with the densities and a simple nuclear potential shows that the p-3He spin–spin
interaction is much weaker than the spin-independent central interaction.
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Recently a complete set of proton depolarizations D
j

i (θ )
for p-3He elastic scattering at Ep = 800 MeV were mea-
sured together with differential cross sections and analyzing
powers [1]. We first point out that the measured depolarizations
satisfy the following relations, as shown in Fig. 1,

Dx
x (θ ) ≈ Dz

z(θ ), Dx
z (θ ) ≈ −Dz

x(θ ), Dy
y (θ ) ≈ 1, (1)

which were not discussed in Ref. [1]. Here, the coordinate
axes are chosen as z‖ki and y‖ki × kf , where ki (kf) is the
p-3He relative momentum in the initial (final) state. These
depolarizations are exactly related to each other as Dx

x (θ ) =
Dz

z(θ ),Dx
z (θ ) = −Dz

x(θ ), and D
y
y (θ ) = 1 in proton scattering

from spinless nuclei. Thus, the observed deviations from the
exact relations will describe contributions of the 3He spin in
the p-3He interaction.

In the present paper, we will theoretically derive rela-
tion formulas for the depolarizations. The formulas include
characteristics of the p-3He spin-dependent interactions and
then provide the approximate relations, Eq. (1), when the
magnitudes of scattering amplitudes due to p-3He spin–spin
and tensor interactions are small, implying the interactions to
be weak. The weakness of these interactions is the reflection of
the spin structure of the 3He nucleus within the framework of
folding models. To verify such a prediction, spin densities
of 3He are calculated from a wave function obtained by
solving the Faddeev equation, and the spin–spin and tensor
interactions are shown to be significantly diminished owing
to the characteristics of the densities. In fact, a folding-model
calculation is performed with the densities to give a very weak
spin–spin interaction.

∗Electronic address: ishikawa@i.hosei.ac.jp

In theoretical developments we will follow those for
hyperon-nucleon scattering [2], since the spins of related
particles are 1

2 in the both cases. We will calculate the
depolarizations in a way that makes it easy to identify the
contribution of each spin-dependent interaction. For that
purpose, we expand the T matrix M into spin-space tensors
S(K)

κ , where K(κ) is the rank (z component) of the tensor,

M =
∑
Kκ

(−)κ S(K)
−κ R(K)

κ , (2)

where R(K)
κ is the counterpart, the coordinate space tensor.

The tensors S(K)
−κ and R(K)

κ depend on the magnitudes of
spins of related particles. In the following, this dependence
is designated by the channel spins, si and sf , where si and sf

are 0 or 1. Denoting the z component of spin s by ν, Eq. (2)
gives the scattering amplitude

〈sfνf ; kf|M|siνi; ki〉 =
2∑

K=0

(−)sf−νf (sisfνi − νf|Kκ)

×M (K)
κ (sisf ; ki, kf), (3)

with

M (K)
κ (sisf ; ki, kf) = (−)si−sf

√
2K + 1

(sf‖S(K)‖si)

×〈kf|R(K)
κ (sisf)|ki〉. (4)

The amplitudes with K = 0,M
(0)
0 (sisf ; ki, kf), describe

scattering by central interactions, those with K =
1,M (1)

κ (sisf ; ki, kf), scattering by spin-orbit (SO) ones, and so
on. Higher-order contributions of interactions are also included
in these amplitudes according to their tensorial properties in
the spin space.
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FIG. 1. (Color online) Measured depolarizations for p-3He elas-
tic scattering at Ep = 800 MeV [1]. (a) Dx

x (θ ) (solid circles) and
Dz

z (θ ) (open circles). (b) −Dz
x(θ ) (solid circles) and Dx

z (θ ) (open
circles). (c) Dy

y (θ ) (solid circles).

In the present reference frame, the parity conservation
gives [3]

M
(K)
−κ (sisf ; ki, kf) = (−)K−κM (K)

κ (sisf ; ki, kf). (5)

Further, in elastic scattering, the time reversal theorem
gives [2]

M (1)
κ (10; ki, kf) = −M (1)

κ (01; ki, kf), (6)

and √
3
2M

(2)
0 (11; ki, kf) − M

(2)
2 (11; ki, kf)

= −2 cot θM
(2)
1 (11; ki, kf). (7)

In total, six amplitudes, namely, two scalar, two vector, and
two tensor amplitudes, are the independent ones. Expressions
of polarization observables with these amplitudes are given in
the appendix of Ref. [2].

To identify the contribution of spin components of the
p-3He interaction, we introduce a model interaction referring
to the general form of the p-3He scattering amplitude [4],

〈kf|M|ki〉 = Uα + (sp · sh)Uβ

+ (sp · n)Sp + (sh · n)Sh

+ ŜT (n)Tn + (ŜT (�) − ŜT (m))T�m. (8)

Here, � and n are the unit vectors parallel to ki + kf and
ki × kf , respectively, and m = n × �; ŜT (a) is the tensor
operator with respect to a unit vector a given as

ŜT (a) = 12(sp · a)(sh · a) − 4(sp · sh). (9)

In Eq. (8), Uα and Uβ describe the scattering by the spin-
independent and spin-spin central interactions, Sp and Sh the
scattering by the proton SO and the 3He SO interactions,
and Tn and T�m the scattering by the tensor interactions.
Here, a ŜT (�) + ŜT (m) term that possibly arises is included
in the ŜT (n) term by the use of the symmetry relation
ŜT (n) + ŜT (�) + ŜT (m) = 0. From interaction (8), Eq. (4)
gives

M
(0)
0 (00; ki, kf) = Uα − 3

4
Uβ, (10)

M
(0)
0 (11; ki, kf) =

√
3Uα +

√
3

4
Uβ, (11)

M
(1)
+1(01; ki, kf) = i

2
√

2
(Sp − Sh), (12)

M
(1)
+1(11; ki, kf) = − i

2
(Sp + Sh), (13)

M
(2)
0 (11; ki, kf) = 3

√
6 cos θT�m −

√
6Tn, (14)

M
(2)
+1(11; ki, kf) = −6 sin θT�m, (15)

M
(2)
+2(11; ki, kf) = −3 cos θT�m − 3Tn. (16)

For later convenience, we define two tensor amplitudes,
Tα and Tβ , as

Tα = 1√
6
M

(2)
0 (11; ki, kf) + M

(2)
2 (11; ki, kf)

= −4Tn, (17)

Tβ = − 1

sin θ
M

(2)
1 (11; ki, kf)

= 6T�m. (18)

We will calculate the depolarizations in terms of
Uα,Uβ, Sp, Sh, Tα , and Tβ by using

D
j

i (θ ) = 1

4σ (θ )
Tr(Mσi M†σj ), (19)

where σ (θ ) is the cross section and σ is the Pauli spin matrix
of the proton. Then we get the following formulas for relations
between the depolarizations:

Dx
x (θ ) − Dz

z(θ ) = −cos θ

σ (θ )
Re{(Uβ + Tα)∗Tβ}, (20)

Dz
x(θ ) + Dx

z (θ ) = sin θ

σ (θ )
Re{(Uβ + Tα)∗Tβ}, (21)

1 − Dy
y (θ ) = 1

σ (θ )

{
1

4
|Uβ + Tα|2 + |Tβ |2

}
, (22)

with

σ (θ ) = |Uα|2 + 3
16 |Uβ |2 + 1

4 (|Sp|2 + |Sh|2)

+ 3
8 |Tα|2 + 1

2 |Tβ |2. (23)

The numerators on the right-hand sides of Eqs. (20), (21),
and (22) are fully governed by the spin–spin central amplitude
Uβ and the tensor amplitudes, Tα and Tβ . When the magnitudes
of these amplitudes are small, Eqs. (20), (21), and (22) lead to
Eq. (1). That is, the experimentally observed relations should

027601-2



BRIEF REPORTS PHYSICAL REVIEW C 72, 027601 (2005)

2

0.0

0.1

0.2

0. 3

210

10

0.0

0.1

0.2

0.3

(b)

ρ(
r)

r (fm)

ρ(p,up)(r) - ρ(p,down)(r)
ρ(n,up)(r) - ρ(n,down)(r)

ρ(
r)

ρ(p,up)(r)
ρ(p,down)(r)
ρ(n,up)(r)
ρ(n,down)(r)

(a)

FIG. 2. (Color online) Nucleon densities in 3He as functions of
the distance from the center of the 3He nucleus, r. (a) The solid and
dashed curves depict the proton densities for spin-up and spin-down,
respectively. The dotted and dashed-dotted curves show the neutron
densities for spin-up and spin-down, respectively. (b) The solid and
dashed curves depict the up–down differences for the proton and the
neutron, respectively.

be a sign of the characteristic feature of the p-3He interaction,
the weakness of the spin–spin and tensor interactions. In detail,
however, one sees small but finite differences between the
measured depolarizations as shown in Fig. 1. Such differences
are due to the contribution of the amplitudes, Uβ + Tα and
Tβ , and thus provide measures of the spin–spin and tensor
interactions. Eliminating Re{(Uβ + Tα)∗Tβ} from Eqs. (20)
and (21), one can derive the following relation formula:

Dz
x(θ ) + Dx

z (θ )

Dz
z(θ ) − Dx

x (θ )
= tan θ, (24)

which agrees with the formula required by the time reversal
theorem in nucleon–nucleon scattering [5].

The features of the p-3He spin–spin and tensor scattering
amplitudes should originate from those of the respective
components of the p-3He interaction. From this viewpoint,
we will examine if folding-model interactions have the above
features. The spin structure of the 3He nucleus is one ingredient
to help explain the p-3He interaction in the folding model.
Figure 2 shows the nucleon densities in the 3He nucleus, whose
wave function is calculated by the Faddeev method [6,7]. The
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FIG. 3. (Color online) Proton-3He central potentials calculated by
a folding model. The real and imaginary parts of the spin-independent
potentials V

(p–h)
0 (R) are shown as the solid and dashed curves,

respectively, and the corresponding spin–spin potential V (p–h)
σ (R) by

the dotted and dashed-dotted curves, respectively. The abscissa R is
the distance between the proton and 3He.

calculation includes the proton–proton Coulomb interaction
and the Brazil-model three-nucleon force [8] in addition to
the Argonne V18 two-nucleon force [9]. In Fig. 2(a), ρ(x,up)(r)
and ρ(x,down)(r) denote the density distributions of a nucleon
x, where x is the proton (p) or the neutron (n), for its spin
direction up and down, respectively, with the choice of the 3He
spin to be up. Here r is the distance from the center of the 3He.
The up–down differences ρ(x,up)(r) − ρ(x,down)(r) are shown in
Fig. 2(b). From these figures, it is easily seen that the density of
the spin-up proton is very close to that of the spin-down proton
except for small r, indicating the total of the proton spins is
effectively almost zero at most places in the nucleus. On the
other hand, the density of the spin-up neutron is dominant
over that of the spin-down neutron. Such characteristics of
the densities are shown in the form of their volume integrals
in Table I. These indicate that the protons in 3He scarcely
contribute to the p-3He spin–spin and tensor interactions
and that only the neutron significantly contributes to the

TABLE I. Volume integrals of the proton and neutron densities
in the 3He nucleus.

x Nx,up Nx,down Nx,up + Nx,up −
Nx,down Nx,down

Proton 0.973 1.027 2.000 -0.054
Neutron 0.935 0.065 1.000 0.870
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interactions. The strengths of these interactions therefore will
be much reduced.

With the above nucleon densities, we will fold a p-x central
potential, which consists of the spin-independent component
v

(p-x)
0 (rpx) and the spin–spin v

(p-x)
σ (rpx)(sp · sx), to obtain

the p-3He potential. The resultant potential has also a spin-
independent central component V

(p–h)
0 (R) and the spin–spin

component V
(p–h)
σ (R), where R is the distance between the

proton and 3He. They are described as

V
(p–h)

(0/σ ) (R) =
∑

x=p,n

∫
d rv(p-x)

(0/σ ) (|R − r|)

× [ρ(x,up)(r) ± ρ(x,down)(r)], (25)

where the plus sign is for V
(p–h)

0 (R) and the minus for
V

(p–h)
σ (R).

Since our present purpose is to examine the suppression
of V

(p–h)
σ in comparison with V

(p–h)
0 , we will estimate such

an effect in a simple way, adopting a three-range Gaussian
form for v

(p-x)
(0/σ ) . Range and strength parameters are taken from

Ref. [10] (G3RS); these parameters are determined to repro-
duce low-energy nucleon–nucleon (NN) phase shifts. The use
of the G3RS at intermediate energies such as Ep = 800 MeV is

less valid because of the neglect of inelastic channel contribu-
tions. To compensate for such defects, we extend the G3RS to
be complex by multiplying by complex factors so that the
volume integrals of v

(p-x)
(0/σ ) are equivalent to those by the

Franey–Love effective NN interaction at Ep = 800 MeV [11].
In Fig. 3, we show the resultant folding potentials. As expected
from Fig. 2, the final magnitude of the calculated V

(p–h)
σ is quite

small compared with that of the calculated V
(p–h)

0 except for
large R, where the magnitudes of potentials are small.

In Ref. [1], the depolarizations calculated by a folding
model with sophisticated nuclear interactions are presented;
there the difference between Dx

x (θ ) and Dz
z(θ ) and that between

Dz
x(θ ) and −Dx

z (θ ) are hardly identified, though the calculated
D

y
y (θ ) deviates from one by small amounts. This means that

their spin–spin central and tensor interactions are weak, as
we predicted. Since the weakness of the spin–spin and tensor
interactions is a reflection of the nuclear structure of 3He,
it will be worthwhile to explore, through measurements of
the depolarizations, whether such features of the interactions
are observed at other energies. These measurements will also
provide information of other p-3He scattering amplitudes,
the spin-independent central one and the spin–orbit ones [2],
which will complement the analysis of cross sections and
analyzing powers [4].
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