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Operation of Faddeev-Kernel in Configuration Space

S. Ishikawa
Department of Physics, Science Research Center, Hosei University,

2-17-1 Fujimi, Chiyoda, Tokyo 102-8160, Japan

We present a practical method to solve Faddeev three-body equations at energies above three-body
breakup threshold as integral equations in coordinate space. This is an extension of previously used
method for bound states and scattering states below three-body breakup threshold energy. We show
that breakup components in three-body reactions produce long-range effects on Faddeev integral
kernels in coordinate space, and propose numerical procedures to treat these effects. Using these
techniques, we solve Faddeev equations for neutron-deuteron scattering to compare with benchmark
solutions.

I. INTRODUCTION

So far, a number of numerical methods to solve Faddeev three-body equations for energies above three-body breakup
threshold have been developed and then applied to a system of nucleon-deuteron, which is considered as one of the
most basic quantum three-body systems [1, 2]. These methods are classified into two groups: either to solve coupled
integral equations for scattering amplitudes in momentum space or to solve coupled partial differential equations for
wave functions in coordinate space.

In this paper, we will present a different approach for three-body scattering problem above the breakup threshold
energy, in which we solve the Faddeev integral equations for wave functions in coordinate space. This approach
has been successfully applied to calculations of the three-nucleon bound states [3, 4] and low-energy three-nucleon
scattering below the breakup threshold energy with inclusion of three-nucleon forces [4] and the long-range Coulomb
interaction [5, 6].

Integral equations for scattering problems are generally written in the form of inhomogeneous linear equations. In
the previous works, we applied an iterative method called the method of continued fraction (MCF) to solve such
equations, whose details are given in Refs. [3, 7] and references therein. A basic procedure of the algorithm in the
MCF is to operate the integral kernel to a function made in a preceding step, as are those in most iterative methods.
It is thus essential to establish precise operations of integral kernels for solving the equations accurately, which is
main subject of this paper.

The existence of three-body breakup channels causes some difficulties in three-body calculations. In the momentum
space approach, for example, the effects appear as logarithmic singularities and discontinuities by a step function in
the integral kernels of the equations so that we need to perform the integration very carefully [8]. In the differential
equation approach, due to the breakup effects one needs to set boundary conditions at very long distance, the order
of tens or hundreds times larger than the range of interaction potentials [9–12]. Since we treat the wave functions
as solutions of the Faddeev integral equations, the long-range behavior should appear in the integral kernel. In the
present paper, we will describe how this behavior appears in our kernel, and how to treat it.

Basic notations and steps of the kernel operation in detail are explained in Sec. II for a simple three-body system.
In Sec. III, we show numerical examples of the kernel operation to a model function emphasizing some techniques to
treat breakup effects, and then compare our calculations with benchmark tests [1, 2]. Finally, we give a summary in
Sec. IV.

II. FORMULATION

A. Notations

Let us consider a system of three identical particles (nucleons) 1, 2, and 3. We use sets of Jacobi coordinates
{xi, yi} defined as {

xi = rj − rk

yi = ri − 1
2 (rj + rk) , (1)

where (i, j, k) denotes (1,2,3) or its cyclic permutations and ri is the position vector of the nucleon i. For simplicity,
we assume that the nucleons j and k interact via a short range pair wise potential Vi = V (xi), where xi = |xi|, and
that the potential supports a s-wave bound state (the deuteron) of energy Ed, whose radial part wave function is
denoted by ϕd(xi).
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We are going to obtain a wave function Ψ corresponding to a scattering process initiated by a state with a nucleon
and a deuteron having relative momentum p0. Faddeev equations for the process in the form of integral equations are

Φi = Ξi + GiVi (Φj + Φk) = Ξi + GiViP̂Φi, (2)

where Φi’s are Faddeev components to make Ψ as

Ψ = Φ1 + Φ2 + Φ3, (3)

Ξi is an initial state consisting of the deuteron for the pair (j, k) and incoming free nucleon i, and Gi is a three-body
channel Green’s operator with the outgoing boundary condition,

Gi =
1

E + ıε + h̄2

m ∇2
xi

+ 3h̄2

4m ∇2
yi
− Vi

. (4)

The total energy in the three-body center of mass (c.m.) frame E is given as

E =
3h̄2

4m
p2
0 + Ed =

3h̄2

4m
p2
0 − |Ed|, (5)

where m denotes the nucleon mass. The operator P̂ represents permutations of the particle numbers,

P̂Φi = Φj + Φk. (6)

A partial wave decomposition is performed by introducing an angular function Yα(x̂i, ŷi),

Yα(x̂i, ŷi) = [YL(x̂i) ⊗ Yℓ(ŷi)]
J0
M0

, (7)

where L denotes the relative orbital angular momentum of the pair (j, k); ℓ the orbital angular momentum of the
spectator i with respect to the c.m. of the pair (j, k); J0 the total angular momentum of the three-body system
(J0 = L + ℓ); M0 the third component of J0. The set of the quantum numbers (L, ℓ, J0, M0) are represented by the
index α. Furthermore, we use an index α0 to denote an initial partial wave state specifically with L = 0.

B. Kernel Operation

In this subsection, we describe how to handle the operation of the Faddeev kernel GV P̂ on a given function Ξ,

⟨x, y|Ξ⟩ =
∑
α

Yα(x̂, ŷ)ξα(x, y) (8)

to produce a new function Φ,

⟨x, y|Φ⟩ = ⟨x, y|GV P̂ |Ξ⟩
=

∑
α

Yα(x̂, ŷ)ϕα(x, y), (9)

where we have dropped the particle number indices (i, j, k) for simplicity.
The kernel operation starts with the permutation operator P̂ to define a function χα(x, y),

χα(x, y) = (Yα|P̂ |Ξ⟩. (10)

In the case of identical particles, P̂ is nothing but a coordinate exchange operator, whose operations are summarized
in A.

Next step is the operation of the Green’s operator G. In the case of the scattering problem, where E > 0, the
Green’s operator G possesses a pole corresponding to the deuteron bound state. In order to treat this pole, we apply
a standard subtraction method, in which we insert a trivial identity,

1 =
∑
α0

|Yα0ϕ
d)(ϕdYα0 | +

[
1 −

∑
α0

|Yα0ϕ
d)(ϕdYα0 |

]
, (11)
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between G and V in Eq. (9). This procedure extracts an elastic contribution of the Green’s operator [13] and leads
to an expression,

ϕα(x, y) = δα,α0ϕ
d(x)F (e)(y) + ϕ(b,c)

α (x, y). (12)

Here, F (e)(y) represents an elastic component in the scattering given by

F (e)(y) =
∫ ∞

0

y′2dy′Ğ0,ℓ0(y, y′)ω(e)(y′), (13)

where Ğ0,ℓ(y, y′) is a partial wave component of the free Green’s operator for the outgoing particle,

Ğ0,ℓ(y, y′) ≡

(
y

∣∣∣∣∣ 1
3h̄2

4m p2
0 + ıε − Tℓ(y)

∣∣∣∣∣ y′

)

= − 4m

3h̄2 p0h
(+)
ℓ (p0y>)jℓ(p0y<) (14)

with

Tℓ(y) = −3h̄2

4m

(
d2

dy2
+

2
y

d

dy
− ℓ(ℓ + 1)

y2

)
. (15)

In Eq. (14), jℓ(p0y) is the spherical Bessel function and h
(+)
ℓ (p0y) is the spherical Hankel function with the outgoing

wave, where the outgoing (+) and the incoming (−) spherical Hankel functions are defined with the spherical Neumann
function nℓ(p0y) as

h
(±)
ℓ (x) = −nℓ(x) ± ıjℓ(x). (16)

The function ω(e)(y), which plays a role of the source for the elastic component in Eq. (13), is given by

ω(e)(y) =
∫ ∞

0

x2dxϕd(x)V (x)χα0(x, y). (17)

The explicit expression of the Green’s function Eq. (14) gives the asymptotic form of F (e)(y) as

F (e)(y) →
y→∞

h
(+)
ℓ0

(p0y) T (e), (18)

where T (e) is the elastic T -matrix amplitude defined by

T (e) = −p0

(
4m

3h̄2

)∫ ∞

0

y2dyjℓ0(p0y)ω(e)(y). (19)

The second term in the right hand side of Eq. (12) expresses three-body breakup and closed-channel components
in the scattering. In our formalism, these components are treated by expanding the Faddeev kernel with respect to a
spectator particle state of momentum p,

uℓ(y; p) ≡
√

2
π

pjℓ(py), (20)

which satisfies a complete relation

δ(y − y′)
yy′ =

∫ ∞

0

dpuℓ(y; p)uℓ(y′; p). (21)

The function ϕ
(b,c)
α (x, y) thereby is written as a Fourier-Bessel transformation:

ϕ(b,c)
α (x, y) =

∫ ∞

0

dpuℓ(y; p)
[
ηα(x; p) − δα,α0ϕ

d(x)Cα(p)
]
. (22)
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Here, ηα(x; p) is defined as

ηα(x; p) = ⟨x|GL|ω̂α⟩, (23)

where GL is a two-body Green’s operator

GL =
1

Eq + ıε − TL(x) − V (x)
(24)

with

TL(x) = − h̄2

m

(
d2

dx2
+

2
x

d

dx
− L(L + 1)

x2

)
. (25)

The energy of the two-body subsystem Eq is given by

Eq = E − 3h̄2

4m
p2 =

h̄2

m
q2, (26)

and the p-dependence of the functions arises through this relation.
The breakup component stems from the integral of the first term in Eq. (22) for the range of 0 ≤ p ≤ pc =√
4mE/3h̄2. In this range the energies of both the spectator particle and the two-body subsystem are positive or

zero, and thus the integral survives at infinite values of x and y, see Eq. (33) below and Refs. [14, 15]. The rest of the
integral of the first term in Eq. (22), i.e., pc < p < ∞, as well as the second term in Eq. (22) damp for large values of
x and y because the energy of the two-body subsystem is negative. In this sense, we call these components closed.

The source term in Eq. (23), ω̂α(x; p), is written as

ω̂α(x; p) = V (x)χ̂α(x; p), (27)

χ̂α(x; p) =
∫ ∞

0

y2dyuℓ(y; p)χα(x, y). (28)

The second term of the right hand side in Eq. (22) appears as a counter part of the subtraction and Cα(p) is defined
as

Cα(p) =
1

Eq − Ed

∫ ∞

0

x2dxϕd(x)ω̂α(x; p). (29)

The apparent singularity in Cα(p) cancels that of the two-body Green’s operator GL, which will be numerically shown
in the following section, and thus, we can apply a standard quadrature to perform the p-integration in Eq. (22) as far
as the both terms are treated together.

In calculating ηα(x; p), we transform Eq. (23) to an ordinary differential equation:

[Eq − TL(x) − V (x)] ηα(x; p) = ω̂α(x; p) (30)

with boundary conditions

ηα(x; p) ∝
x→∞

{
h

(+)
L (qx) (0 ≤ p ≤ pc)

h
(+)
L (ı|q|x) (pc < p < ∞)

. (31)

A treatment of the two-body Green’s operator at three-body breakup region, 0 ≤ p ≤ pc will be described in B. We
here only note that the asymptotic form of ηα(x; p) is given by

ηα(x; p) →
x→∞

h
(+)
L (qx)

(
−q m

h̄2

)
1 − ıKL(q)

⟨ψ̂L(q)|ω̂α⟩, (32)

where ψ̂L(x; q) is a two-body scattering solution with the standing wave boundary condition and KL(q) is a scattering
K-matrix for the two-body scattering (See B).
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The asymptotic form of ϕ
(b,c)
α (x, y) is evaluated by the saddle-point approximation [14, 15] as

ϕ(b,c)
α (x, y) →

x→∞,x/y fixed
−e

π
4 ıı−L−ℓ

(
4K0

3

)3/2
eıK0R

R5/2
Bα(Θ), (33)

where we introduce a hyper radius R and a hyper angle Θ as

R =

√
x2 +

4
3
y2, (34)

x = R cosΘ, y =

√
3
4
R sin Θ, (35)

and K0 is given by

K0 =
√

m

h̄2 E. (36)

Bα(Θ) is the breakup amplitude defined as

Bα(Θ) = −1
p̄

m

h̄2

1
1 − ıKL(q̄)

⟨ψ̂L(q̄)|ω̂α⟩. (37)

Here, the momenta q̄ and p̄ are given as

q̄ = K0 cosΘ, p̄ =

√
4
3
K0 sin Θ. (38)

III. NUMERICAL ANALYSES AND RESULTS

A. Model source function

In this section, we present a numerical example of the kernel operation described in the preceding section with a
model source function that is restricted to L = ℓ = J0 = 0 state but carries a feature of the presence of three-body
breakup channel similarly as the one used in Ref. [12]:

χα(x, y) =
eiK0R

(R + R0)5/2
(39)

with R0 = 5 fm.
We choose the 3S1-component of the Malfliet-Tjon model as presented in Ref. [1] for the potential V (x) and the

incident nucleon energy of ELab = 14.1 MeV, which gives K0=0.416 fm−1, pc=0.480 fm−1, and p0=0.550 fm−1. In
numerical calculations below, mesh points for x- and y-variables in described in C are used.

B. Elastic part

In Fig. 1, we plot the real part of the elastic source function ω(e)(y), Eq. (17), calculated with the model function
Eq. (39). As shown in this figure, ω(e)(y) reveals a long-range behavior, which is given by

ω(e)(y) ∝
y→∞

eıpcy

y5/2
, (40)

whose oscillation length 2π
pc

is about 13 fm.
In calculating the elastic component F (e)(y), we treat this long-range behavior by rewriting Eq. (13) as

F (e)(y) = −nℓ0(p0y)T (y) + ıjℓ0(p0y)T (e) + jℓ0(p0y)
(
S(y) − Ŝ

)
, (41)
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FIG. 1: Real part of the elastic source function ω(e)(y).

where we have defined T (y), S(y), and Ŝ by

T (y) = −p0

(
4m

3h̄2

)∫ y

0

y′2dy′jℓ0(p0y
′)ω(e)(y′) →

y→∞
T (e)

S(y) = −p0

(
4m

3h̄2

)∫ y

0

y′2dy′nℓ0(p0y
′)ω(e)(y′) →

y→∞
Ŝ. (42)

In numerical integration in Eq. (42), we need to be careful for oscillational behaviors of the spherical Bessel and
spherical Neumann functions as well as ω(e)(y). This is done by spline interpolation technique used in Ref. [5] taking
into account of oscillational behavior of the integrand carefully.

For the use of Eq. (41), one needs converged values of T (y) and S(y) for y → ∞. In Fig. 2, we plot the real part of
T (y) for an example. As is expected from the long-range behavior of ω(e)(y), the convergence of T (y) becomes very
slow. However, from the functional form of Eq. (40), we expect that the function T (y) behaves asymptotically as

T (y) →
y→∞

t0 + t1
eı(p0−pc)y

y3/2
, (43)

where t0 and t1 are expansion coefficients and the coefficient t0 is considered as a converged value of T (e). The wave
length evaluated by this equation is 2π

p0−pc
= 90 fm, which is actually observed in Fig. 2. The fitting coefficients in

Eq. (43) are evaluated by a least square fit. To do this, the calculated values of T (y) in a range of 80 ≤ y ≤ ymax
fit

(fm) are used. In Table I, the dependence of the result on ymax
fit is displayed. From the table, we set ymax

fit = 1000 fm
to get a converged result in five digits of accuracy, which is denoted by the dashed line in Fig. 2. We remark that this
result is obtained in spite of the fact the deviation of T (y) from the converged value is still about 0.5 % at y = 1000
fm, which is not shown in Fig. 2.

Here, we consider a range of the variables {x, y} to be used in calculations. In the Faddeev equation, the function
χα(x, y) is always accompanied by the potential V (x), which means that we need to calculate this function within
the range of potential, xR, for the x-variable. On the other hand, there is no restriction for the y-variable. In actual,
Table I demonstrates that we need to calculate χα(x, y) for a large value of y, i.e., 1000 fm.

Suppose that we calculate χα(x, y) by Eqs. (8) and (10) with a function ξα(x, y), which is obtained in a preceding
iteration step, for a range of

{
0 ≤ x ≤ xR, 0 ≤ y ≤ ymax

fit

}
. The formulae, Eqs. (A4) and (A5), show that we need to
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FIG. 2: The real part of the function T (y). The obtained converged value is shown by the dashed line. Dotted lines with the
indices in the right hand side axis denote the deviation of the real part of T (y) from the converged value.

ymax
fit (fm) Re[t0]

532 -6.5454

622 -6.5452

983 -6.5449

1073 -6.5448

1163 -6.5448

1193 -6.5448

TABLE I: The real part of the fitting coefficient t0.

prepare the function ξα(x, y) for a range of

0 ≤ x ≤ 1
2
xR + ymax

fit

0 ≤ y ≤ 3
4
xR +

1
2
ymax

fit (44)

to perform the exchange operation to obtain χα(x, y) for the above range. If we set xR=10 fm and ymax
fit =1000 fm,

this turns to be {0 ≤ x ≤ 1005 (fm), 0 ≤ y ≤ 507.5 (fm)}, which is rather huge.
To facilitate numerical calculations, we limit the range of calculating χα(x, y) to {0 ≤ x ≤ xR, 0 ≤ y ≤ yM} by

choosing the value of yM adequately, and approximate the value of χα(x, y) for y > yM using a form of

χα(x, y) =
0≤x≤xR,y≥yM

eı
√

4
3 K0y

y2/5

(
a0(x) +

a1(x)
y

+
a2(x)

y2

)
, (45)

where the coefficients an(x) are determined by a least square fit to χα(x, y) for y < yM and for each value of x.
With a choice of xM = 10 fm and yM = 80 fm, by which the range for ξα(x, y) becomes {0 ≤ x ≤ 85 (fm), 0 ≤

y ≤ 47.5 (fm)}, we obtain the equivalent results for T (y) and its asymptotic value T (e) to the previously shown.
This procedure reduces the amount of calculations considerably without loss of accuracy, and will be applied in the
following analyses.

Together with the function S(y) and its asymptotic value Ŝ calculated similarly, the elastic component F (e)(y) is
constructed using Eq. (41), whose real part is plotted in Fig. 3. Note that the effect of the slow convergence in T (y)
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and S(y) functions appears as a small oscillation of the amplitude of F (e)(y) with the wave length of 2π
p0−pc

= 90 fm,
which exists up to a large distance where the convergences of T (y) and S(y) are achieved.
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FIG. 3: The real part of the elastic function F (e)(y).

C. Breakup and closed channel parts

First step in the calculation of the three-body breakup and closed channel contributions is the Fourier-Bessel
transformation of χα(x, y) with respect to the coordinate y, Eq. (28). We again face the problem of slow convergence
in the y-integral due to the long-rangeness of χα(x, y). This is treated similarly with the calculation of the elastic
component by writing Eq. (28) as

χ̂α(x; p) =
∫ yM

0

y′2dy′uℓ(y′; p)χα(x, y′)

+ lim
y→∞

∫ y

yM

y′2dy′uℓ(y′; p)χα(x, y′). (46)

The first term is integrated numerically using the spline interpolation technique [5]. Results for the real and the
imaginary parts of the integrals with yM = 80 fm are shown in Fig. 4 (a) by the solid curves. The oscillational
behavior of the curves indicates that the integrals do not converge yet.

In calculating the second term in Eq. (46), we use the asymptotic form of χα(x, y) given by Eq. (45). Now, we
define a function I(n)(y; p) (n =0, 1, or 2) as

I(n)(y; p) =
∫ y

yM

dy′y′uℓ(y′; p)
eıpcy′

(y′)3/2+n
, (47)

and then express this for large values of y in a form of

b
(n)
0 (p) + b

(n)
1 (p)

eı(p−pc)y

y3/2+n
(48)

with expansion coefficients b
(n)
0 and b

(n)
1 to be determined by a least square fit. The wave length of the oscillation of

Eq. (48) with respect to y-variable depends on the momentum p as 2π
p−pc

. In a particular case of p = pc, where no
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FIG. 4: (a) The real and imaginary parts of χ̂α(x; p) for 0 ≤ p ≤ 1 (fm−1) at x = 1 fm. The solid curves are the first term of
Eq. (46) with yM = 80 fm. The dashed curves are the full calculation. (b) The imaginary part and (c) the real part of χ̂α(x; p)
around p = pc at x = 1 fm for various values of yinf . See the text for the details.

oscillation occurs, a functional form of

b
(n)
0 +

b
′(n)
1

y1/2+n
+

b
′(n)
2

y3/2+n
(49)

is used. The second term of Eq. (46) is thereby expressed as

2∑
n=0

an(x)b(n)
0 (p). (50)

Since the functions I(n)(y; p) depend only on yM and the total energy E, we may calculate them once in advance
to start an iterative process in solving the Faddeev equations.

The b-coefficients in Eq. (48) are obtained from a least square fit using values of I(n)(y; p) for a range up to y = yinf .
To obtain accurate values of the coefficients, we need to include at least several oscillations in the range. Since the
wave length of the oscillation becomes larger as p approaching to pc, the maximum value yinf to get a converged
result could become a huge number. This is illustrated in Figs. 4 (b) and (c), where the dependence of the resultant
χ̂α(x; p) on some selected values of yinf is plotted. In the figures, we plot the real and imaginary parts of χ̂α(x; p)
around p = pc = 0.480 fm−1 at x = 1 fm calculated by choosing yinf = 103 fm (dot-dashed curves), 104 fm (dotted
curves), 105 fm (dashed curves), and 4 × 105 fm (solid curves). One sees that even the value of yinf = 103 fm is
not enough to get a converged result. Numerically, it turns out that 4 × 105 fm may be good enough. The results
with yinf = 4 × 105 fm are plotted as dotted curves in Fig. 4 (a). The oscillating behavior due to the small value of
the integral maximum given by the solid curves disappears by taking into account of the long-range character of the
source function χα(x, y).

Using thus obtained χ̂α(x; p), one calculates ω̂α(x; p) from Eq. (27), and then solves the ordinary differential
equation, Eq. (30), with the boundary conditions Eq. (31) to obtain ηα(x; p). The Numerov algorithm is applied for
solving this equation as in Refs. [5, 16] with x-mesh points described in C.

Fig. 5 displays the real (imaginary) part of the resultant ηα(x; p) function at x = 1 fm as thin solid (thin dashed)
curve. The discontinuous singularities of thin curves at p = p0 = 0.550 fm−1 correspond to the deuteron pole in the
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of p. Bold curves are those after the subtraction of ϕd(x)Cα(p)-term in Eq. (22).

two-body Green’s function. These singularities disappear when the term of ϕd(x)Cα(p) in Eq. (22) is subtracted, as
shown as bold curves in the figure.

In our formalism, the breakup amplitude Bα(Θ) is obtained by two different ways. One way is to use Eq. (37)
directory, which can be performed before solving the ordinary differential equation Eq. (30). After getting a solution of
Eq. (30), the breakup amplitude is calculated from its asymptotic form Eq. (32) as the second way. Both calculations
agree each others, which assures the accuracy of the solutions of Eq. (30), and displayed in Fig. 6. In the inserts
of Fig. 6, results with different values of yinf in calculating χ̂α(x; p) are displayed as in Fig. 4 to see effects of the
long-range properties of χα(x, y) in the region of Θ ∼ π/2 region, where q ∼ 0.

Once the function ηα(x; p) is obtained, by performing the transformation Eq. (22) with the spline interpolation
technique, we obtain the function ϕ

(b,c)
α (x, y). Together with the elastic component F (e)(y), we finally obtain ϕ(x, y)

by Eq. (12).

D. Comparison with the Benchmark solutions

The formalism for the operation of the Faddeev kernel described in the preceding sections is easily extended to
more realistic cases, with spin degrees of freedom, with three-body forces, etc. Accommodating the formalism in the
MCF algorithm [3, 7], we are able to solve the Faddeev integral equations in coordinate space. To demonstrate the
accuracy of our method, we performed calculations of the neutron-deuteron (n-d) scattering with the Malfliet-Tjon
I-III potential, for which benchmark tests exist [1, 2]. The comparison are made in Tables II and III and Figs. 7 and
8.

In Tables II and III, where we tabulate results of the s-wave phase shift parameters for the n-d doublet and quartet
states at the incident energies ELab of 4.0, 14.1, and 42.0 MeV, the calculations in the benchmark tests are denoted as
Utrecht, Jülich/NM, Bochum, LA/Iowa, and Hosei(Q). (See Ref. [1] for further references of these methods.) In the
calculations indicated as Utrecht and Bochum, coupled two-dimensional integral equations in momentum space are
directly solved by Padé approximant methods. Integral kernels of their equations consist of free three-body Green’s
operator, two-body t-matrix, and permutations operators. The two-body t-matrix possesses a pole due to the deuteron,
whose effect is treated by a subtraction method. The breakup effects appear as singularities in the three-body Green’s
function, see Ref. [8] for the details. Those indicated by Jülich/NM and Hosei(Q) use a separable expansion for
two-body t-matrix to reduce the dimension of integral equations to one, and then solve the resulting equations taking
into account of singularities in the kernels by technique of the contour deformation. In the calculations denoted as
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FIG. 6: The breakup amplitude Bα(Θ). The solid line shows the real part and the dashed line the imaginary part. The inserts
show the behavior of yinf -dependence in calculating χα(x; p) function. The meaning of each curve is explained in the text.

ELab (MeV) 4.0 14.1 42.0

Re(δ) η Re(δ) η Re(δ) η

Utrecht [1] 143.7 0.963 106.5 0.468 41.9 0.488

Jülich/NM [1] 143.7 0.952 104.9 0.460 41.3 0.501

Bochum [1] 143.7 0.964 105.5 0.467 41.3 0.504

LA/Iowa [1] 143.7 0.964 105.4 0.463 41.2 0.501

Hosei(Q) [1] 143.7 0.964 105.5 0.465 41.3 0.502

This work 143.7 0.964 105.5 0.466 41.6 0.498

TABLE II: Comparison of the benchmark calculations [1] and the present calculations for neutron-deuteron spin-doublet phase
shift parameters with the Malfliet-Tjon I-III potential.

LA/Iowa, the Faddeev differential equations in configuration space are solved with boundary conditions for the elastic
and the breakup regions of the wave functions. We noted that the boundary condition for the elastic channel used
there does not include the small oscillation behavior found in Fig. 3.

A breakup amplitudes defined in Ref. [2], A(Θ), is related with our amplitude Bα(Θ) for L = ℓ = 0 as

A(Θ) = −e
π
4 ı

(
4
3

)3/2

p0K
4
0Bα(Θ). (51)

In Figs. 7 and 8, the results of the breakup amplitude are compared for ELab = 14.1 MeV and 42.0 MeV, respectively.
In the figures, our results for the real (imaginary) part are shown as the solid (dashed) curves, while those by Bochum
and LA/Iowa groups [2], which are almost equivalent, are denoted by circles (triangles).

All of our results agree with the benchmark calculations better than 1 % level except about 2 % discrepancy for
the η parameter in the quartet state at 42.0 MeV, which demonstrates the present formalism is promising in solving
the three-body scattering problem at energies above three-body breakup threshold.
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ELab (MeV) 4.0 14.1 42.0

Re(δ) η Re(δ) η Re(δ) η

Utrecht [1] 102.1 1.000 68.8 0.978 38.4 0.898

Jülich/NM [1] 101.1 1.000 68.5 0.986 37.2 0.907

Bochum [1] 101.6 0.999 69.0 0.978 37.7 0.903

LA/Iowa [1] 101.5 1.000 68.9 0.978 37.8 0.906

Hosei(Q) [1] 101.6 1.000 68.9 0.978 37.7 0.903

This work 101.6 1.000 69.1 0.976 37.8 0.889

TABLE III: Comparison of the benchmark calculations [1] and the present calculations for neutron-deuteron spin-quartet phase
shift parameters with the Malfliet-Tjon I-III potential.
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plotted as circle and triangle points.

IV. SUMMARY

We have presented a method to operate the Faddeev integral kernel in coordinate space at energies where three-
body breakup reactions take place. Effects of three-body breakup reactions appear as a long-range source contribution
to the elastic component and to the breakup amplitudes at two-body sub-system having almost zero energy. Some
numerical procedures are developed to treat these long-range behaviors. With a model source function and a model
potential, we have displayed some numerical examples to verify the accuracy of our method.

The procedure described in this paper can be used to solve the Faddeev equations in combination with an iterative
algorithm to solve linear equations such as MCF. Solutions of the three-nucleon Faddeev equations are given for the
Malfliet-Tjon I-III potential, and scattering phase shifts as well as the breakup amplitudes obtained from the solutions
give a good agreement with the benchmark solutions. Results for three-nucleon systems with realistic nucleon-nucleon
interactions and three-nucleon interactions will be presented elsewhere.

Since the integral kernel and hence the wave function in our formalism can be written as the sum of the elastic,
three-body breakup, and closed channels, effects of each reaction mechanism can be easily drawn. Our formalism thus
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can be extended to treat a three-body model of nuclear reactions including three-body breakup reactions in such a
way that the theory resembles conventional theories of reactions.
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APPENDIX A: PARTICLE EXCHANGE OPERATOR P̂

In this appendix, we summarize formulae to accomplish the particle exchange operator P̂ in Eq. (10). χα(x, y) in
Eq. (10) is given as

χα(x, y) =
∑
α′

χα,α′(x, y), (A1)

where

χα,α′(x, y) = (Yα|P̂ |Yα′ξα′⟩

=
L′∑

a=0

ℓ′∑
c=0

∑
b,d

δa+b,L′δc+d,ℓ′x
a+cyb+d

∑
γ,L0

Kα′

γ (x, y)Racγ
(Lℓ,L′ℓ′)L0

(A2)

with

Racγ
(Lℓ,L′ℓ′)L0

= (−1)L0+L′−ℓ′+γL̂L̂′ℓ̂ℓ̂′b̂d̂

(
2L′ + 1

2a

)1/2 (
2ℓ′ + 1

2c

)1/2

×
(
−1

2

)a

(1)b

(
−3

4

)c (
−1

2

)d ∑
e,f

(−)e+f êf̂⟨ac00|e0⟩⟨bd00|f0⟩

×


a b L′

c d ℓ′

e f L0

 ⟨Le00|γ0⟩⟨ℓf00|γ0⟩

{
e γ L

ℓ L0 f

}
(A3)

and

Kα′

γ (x, y) =
∫ 1

−1

du
ξα′(x′′, y′′)
(x′′)L′(y′′)ℓ′

Pγ(u). (A4)

Here, n̂ denotes
√

2n + 1; Pγ(u) is the Legendre polynomial; x′′ and y′′ are x′′ =
√

1
4x2 − xyu + y2

y′′ =
√

9
16x2 + 3

4xyu + 1
4y2.

(A5)

APPENDIX B: GREEN’S OPERATOR

In this appendix, we first review two-body Green’s operators and describe how to calculate Eq. (23).
We define Green’s operators for the outgoing (+) and the incoming (−) boundary conditions with and without a

potential as

G
(±)
L =

1
Eq ± ıε − TL(x) − V (x)

(B1)
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G
(±)
0,L =

1
Eq ± ıε − TL(x)

. (B2)

These satisfy resolvent relations

G
(±)
L = G

(±)
0,L + G

(±)
L V G

(±)
0,L = G

(±)
0,L + G

(±)
0,LV G

(±)
L . (B3)

Two-body scattering wave functions corresponding to the outgoing and the incoming boundary conditions |ψ(±)
L ⟩

satisfy the Lippmann-Schwinger equations

|ψ(±)
L ⟩ = |jL⟩ + G

(±)
0,LV |ψ(±)

L ⟩, (B4)

whose formal solutions are written as

|ψ(±)
L ⟩ = |jL⟩ + G

(±)
L V |jL⟩. (B5)

Although the Green’s operators and the wave functions above are complex values, we do not necessarily have to
handle complex values when the potential V (x) is real. For this we define the principal values of the two-body Green’s
operators PGL and PG0,L

PGL = P 1
Eq − TL(x) − V (x)

(B6)

PG0,L = P 1
Eq − TL(x)

. (B7)

As is G
(±)
0,L , an analytical form of PG

(±)
0,L is known and these operators are related as

G
(±)
0,L = PG0,L ∓ ıq

m

h̄2 |jL⟩⟨jL|, (B8)

A scattering wave function corresponding to PG0,L, namely standing wave solution |ψ̂L⟩ satisfies

|ψ̂L⟩ = |jL⟩ + PG0,LV |ψ̂L⟩, (B9)

and a formal solution of this is given as

|ψ̂L⟩ = |jL⟩ + PGLV |jL⟩. (B10)

From the standing wave solution, the outgoing and the incoming solutions are obtained as

|ψ(±)
L ⟩ =

1
1 ∓ ıKL

|ψ̂L⟩, (B11)

where KL is the scattering K-matrix defined by

KL = −q
m

h̄2 ⟨jL|V |ψ̂L⟩, (B12)

which becomes tan δ with a phase shift parameter δ. Using the relations above, one obtains a relation between G
(±)
L

and PGL as

G
(±)
L = PGL ∓ ıq

m

h̄2 |ψ̂L⟩
1

1 ∓ ıKL
⟨ψ̂L|, (B13)

which reduces to Eq. (B8) if V (x) was 0, leading to ψ̂L(x) = jL(qx) and KL = 0.
Next, we discuss about asymptotic form of the Green’s functions. The asymptotic forms of G

(±)
0,L and PG0,L are

obtained from their analytical forms as

G
(±)
0,L → −q

m

h̄2 |h
(±)
L ⟩⟨jL|, (B14)
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PG0,L → q
m

h̄2 |nL⟩⟨jL|. (B15)

These equations and the resolvent equations together with the formal solutions Eqs. (B5) and (B10) lead to

G
(±)
L → −q

m

h̄2 |h
(±)
L ⟩⟨ψ∓

L |, (B16)

PGL → q
m

h̄2 |nL⟩⟨ψ̂L|. (B17)

Finally, we describe how to calculate Eq. (23), which we write simply as

η(x) = ⟨x|G(+)
L |ω̂⟩. (B18)

Using Eq. (B13), one can write η(x) as

η(x) = η̄(x) − ıq
m

h̄2 ψ̂L(x)
1

1 − ıKL
⟨ψ̂L|ω̂⟩, (B19)

where a new function η̄(x) is defined by

η̄(x) = ⟨x|PGL|ω̂⟩. (B20)

From Eq. (B17), the asymptotic form of η̄(x) can be written as

η̄(x) →
x→∞

q
m

h̄2 nL(qx)⟨ψ̂L|ω⟩ (B21)

In actual calculation, the function η̄(x) is obtained by solving the ordinary differential equation

[Eq − TL(x) − V (x)] η̄(x) = ω̂(x) (B22)

with the boundary condition

η̄(x) ∝
x→∞

nL(qx). (B23)

These relations give the asymptotic form of η(x) as

η(x) →
x→∞

h
(+)
L (qx)

1
1 − ıKL

(
−q

m

h̄2

)
⟨ψ̂L|ω̂⟩. (B24)

APPENDIX C: MESH POINTS FOR x AND y VARIABLES

Crucial procedures in our numerical calculations are to solve the differential equations Eq. (30) and the Fourier-
Bessel transformation Eq. (28), which are related to x- and y-mesh points, respectively. In this appendix, we give
some remarks on these mesh points.

Both mesh points are taken in uneven distances so as to be shorter near the origin to take into account of short
range nuclear potentials.

Uneven mesh points, for x-mesh, e.g., are created with the same functional form as the one used in Ref. [5]

t(x) =
c(x + t0)x

x + s0
(C1)

or inversely

x(t) =
−(ct0 − t) −

√
(ct0 − t)2 + 4cs0t

2c
, (C2)

with equidistant t-mesh points. The parameters of Eq. (C1), c, t0, and s0, are determined from the following conditions:

1. The x-mesh size near the origin : ∆x0
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2. The x-mesh size at large distance (the infinity) : ∆x∞

3. A value of x-mesh points, xm, and the number of the mesh points for 0 < x ≤ xm : Nx

We can choose the distance of t-mesh points, ∆t, as arbitrary, and thus

tm = Nx∆t = t(xm) (C3)

From Eq. (C1),

dt

dx

∣∣∣∣
x=0

=
ct0
s0

(C4)

dt

dx

∣∣∣∣
x=∞

= c (C5)

Then,

∆x0 =
s0

ct0
∆t (C6)

∆x∞ =
1
c
∆t (C7)

Using the values of Nx, xm, ∆x0, and ∆x∞ as an input, we rewrite the above conditions as

c =
∆t

∆x∞
(C8)

s0 =
Nx − xm

∆x∞
xm

∆x0
− Nx

xm (C9)

t0 =
∆x∞

∆x0
s0 (C10)

In the present calculations, we set ∆t = 1 (fm) both for x- and y-mesh points; Nx = 60(100), xm = 10(80) fm,
∆x0 = 0.025(0.033), ∆x∞ = 0.3(1.25) for x- (y−) mesh points.
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[12] Payne, G. L., Glöckle, W., Friar, J. L.: Phys. Rev. C 61, 024005 (2000)
[13] Sasakawa, T.: Phys. Rev. C 17, 2015 (1978)
[14] Sasakawa, T., Sawada, T.: Suppl. Prog. Theor. Phys. 61, 61 (1977)
[15] Rudge, M. R. H., Seaton, M. J.: Proc. Roy. Soc. A 283, 262 (1965)
[16] Sasakawa, T., Sawada, T.: Phys. Rev. C 19, 2035 (1979)


