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Abstract

This paper proposes a general method to recover the subjective prob-
ability distribution of nonlinear payoffs from option prices. We show that
the characteristic function of the distribution can be represented as the
present value of a static option portfolio with complex-valued portfolio
weights. By applying Fourier inversion, we derive the subjective proba-
bility distribution from the characteristic function. As an illustration, we
successfully recover the subjective probability distributions of option pay-
offs and agent’s utility. This research contributes a valuable framework for
understanding subjective probability distributions and their implications
for financial analysis and decision-making.
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1 Introduction

The standard theory of asset pricing posits that asset prices are influenced by
the subjective probabilities held by a representative agent. However, in financial
markets, these subjective probabilities are not directly observable. This paper
introduces a novel approach to recovering the subjective probability distributions
associated with nonlinear payoffs, utilizing observed option prices in markets.
Our proposed method offers a general framework for achieving this goal. To
demonstrate the effectiveness of our method, we provide illustrative examples that
demonstrate its application in recovering the subjective probability distributions
of option payoffs, as well as those of the utility preferences of the agent.

Recovering subjective probability distributions from asset price data is crucial
for gaining insights into market sentiment and understanding ex-ante probability
distributions. A notable contribution in this area is Ross’s (2015) introduction of
the Ross recovery theorem, which offers a method to extract the subjective proba-
bilities of an asset price from its option prices. While the Ross recovery theorem is
groundbreaking, it faces several implementation challenges. First, Ross’s method
relies on knowing all risk-neutral transition probabilities, which can be difficult to
obtain. Jackwerth and Menner (2018) have highlighted the complexity of extract-
ing a risk-neutral probability transition matrix from option prices, resulting in
unstable estimates of subjective probability distributions. Second, Ross’s method
recovers discrete probability distributions instead of continuous ones, which may
limit practical applicability in many cases. Third, Ross’s method assumes that
the pricing kernel is the ratio of the marginal utility in the future state to the
marginal utility in the present state, potentially imposing restrictive assumptions.

Another estimation method for recovering the subjective probability distri-
bution of asset prices has been proposed by Yamazaki (2022), which is based
on a static replication strategy using option portfolios. Unlike Ross’s method,
Yamazaki’s approach yields continuous probability distributions and does not
impose any specific assumptions on the pricing kernel. Furthermore, Yamazaki
empirically examined the behavior of the subjective probability distributions of
the S&P 500 index returns. Although Yamazaki’s method is novel in itself, the re-
sults obtained through his approach can be derived from previous methods such as
Bliss and Panigirtzoglou (2004), who utilized the well-known three-way relation-
ship between the subjective density function, the risk-neutral density function,
and the pricing kernel to estimate the coefficient of risk aversion.

This paper focuses on developing a recovery method specifically for the sub-
jective probability distribution of a nonlinear payoff on an asset, as opposed to
the subjective probability distribution of the asset price itself. It is important
to note that Ross (2015), Yamazaki (2022), and Bliss and Panigirtzoglou (2004)
address the latter case. As far as our knowledge extends, this is the first endeavor
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to recover the subjective probability distribution of a nonlinear payoff.
A rough sketch for developing our method is as follows. We deal with the char-

acteristic function of the subjective probability distribution of a nonlinear payoff.
This characteristic function can be thought of as the subjective expectation of
a complex-valued payoff. By using the reciprocal kernel proposed by Yamazaki
(2022), the subjective expectation can be transformed into the risk-neutral ex-
pectation of the complex-valued payoff multiplied by the reciprocal kernel. Then,
with the static replication strategy, the risk-neutral expectation can be expressed
as the present value of a static portfolio consisting of plain vanilla options with
complex-valued portfolio weights. As a result, the characteristic function we wish
to obtain can be obtained from the option prices observed in the option market.
The inversion formula for the characteristic function allows us to recover the
subjective probability distribution of the nonlinear payoff.

There are two key points in our method: One of them is the reciprocal kernel.
Yamazaki (2022) considered the projection of a pricing kernel onto a future asset
price and defined the reciprocal kernel as the reciprocal of the projected pricing
kernel. He proved that the subjective expectation of an arbitrary payout depend-
ing on the terminal asset price equals the present value of the product of the
reciprocal kernel and the payout. He then applied the reciprocal kernel to derive
the formula for the subjective cumulative distribution function of an asset price.
A similar approach was used by Chabi-Yoa and Loudis (2020). Similarly, we
utilize the reciprocal kernel to transform subjective expectations into risk-neutral
expectations.

Another key point is the static replication strategy. Basically, there are two
ways to use the static replication strategy. First, it is applied to replicate contin-
gent claims. For example, Carr et al. (1998), Fink (2003), Nalholm and Poulsen
(2006) developed static replication strategies for barrier options, while Takahashi
and Yamazaki (2009a, 2009b) and Carr and Wu (2014) did them for long-term
options. Osaki and Yamazaki (2011) proposed a method to replicate defaultable
bonds by a static portfolio of plain vanilla options. Many researchers, includ-
ing Carr and Madan (1998), Demeterfi et al. (1999), Carr and Lewis (2004), and
Takahashi et al. (2011), also studied semi-static replication methods for volatility
derivatives such as variance swaps and gamma swaps. Second, static replication
strategies have been used in methods to estimate fundamental statistics of asset
prices from observed option prices. For example, Bakshi et al. (2003), Martin
(2017), and Yamazaki (2022) developed such estimation methods. This research
belongs to the second case and is novel in that it considers static option portfolios
with complex-valued portfolio weights.

This paper focuses on the recovery of subjective probability distributions of
two types of payoffs: option payoffs and agent’s utility.

It is widely recognized that any arbitrary payoff can be expressed as a linear
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combination of call and put option payoffs. The call and put option payoffs serve
as fundamental components for constructing nonlinear payoffs. In a model-free
framework, based on reasonable assumptions, we prove that the characteristic
functions of the subjective probability distributions of call and put payoffs can be
represented as the present values of static option portfolios with complex-valued
portfolio weights. Consequently, the subjective probability distributions can be
derived from these characteristic functions by employing inversion formulas such
as Lévy’s inversion theorem and Gil-Pelaez’s theorem. To validate the efficacy of
our recovery method, we conduct a numerical test employing the Black-Scholes
model. In this test, we set the market price of risk, establish both a physical and
a risk-neutral world, and attempt to recover the physical probability distribution
of an at-the-money straddle payoff using our proposed method. Furthermore, we
verify the consistency of the recovered physical distribution with the distribution
obtained from a Monte Carlo simulation conducted with the Black-Scholes model.

In our empirical experiment, the objective is to recover the subjective proba-
bility distributions of agent’s utility with constant relative risk aversion (CRRA),
which includes the risk-neutral case. To achieve this, we consider a textbook-style
optimal investment-consumption problem and suppose CRRA-utility functions in
relation to the market portfolio’s levels. To estimate the shape of the subjective
probability distributions associated with these utility functions, we employ im-
plied volatility data of the S&P 500 index, which we regard as a suitable proxy
for the market portfolio.

The subsequent sections of this paper are organized as follows: Section 2
provides a comprehensive description of the model-free setup, taking into account
several mild assumptions. Section 3 outlines the recovery formulas developed for
obtaining the subjective probability distributions of option payoffs. Section 4
presents the empirical experiment conducted to recover the subjective probability
distributions of agent’s utility. Section 5 concludes the research by summarizing
the key findings and implications. Furthermore, Appendices contain all the proofs
and some supplements.

2 Setup

This section introduces a model-free framework for recovering the subjective prob-
ability distributions associated with nonlinear payoffs of an asset from its option
prices. We assume that no arbitrage opportunities exist and that all plain vanilla
options on the asset are tradable without incurring transaction costs. Consider a
fixed period, [0, T ], and let St be the asset price at time t ∈ [0, T ].
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2.1 Option payoffs

Call and put options play a crucial role in our recovery method, serving as funda-
mental components. Their payoffs form the foundational building blocks for all
nonlinear payoffs. Moreover, their prices serve as a valuable source for recovering
the subjective probability distribution of an arbitrary nonlinear payoff. Call and
put option payoffs are

(ST −K)+ and (K − ST )+, (2.1)

respectively, where K is a strike price and T is option maturity.
The prices of the call and put options as a function of the strike price K are

expressed as

C(K) :=
1

Rf

E∗ [(ST −K)+] and P (K) :=
1

Rf

E∗ [(K − ST )+] , (2.2)

respectively, where E∗[ · ] denotes the expectation operator under the risk-neutral
probability measure, Q, and Rf is the gross return on a risk-free asset during
the period. Let F be the forward price of the asset expiring at time T . This
paper deals primarily with the out-of-the-money (OTM) or forward at-the-money
(ATM) options.

2.2 Reciprocal kernel

Let M be a strictly positive random variable, such that the price of an arbitrary
payoff X paid at time T is given by

E [MX] . (2.3)

where E[ · ] denotes the expectation operator under the subjective probability
measure, denoted as P. Here, the subjective probability represents the belief or
consensus of the representative agent or market participants. Namely, M is a
pricing kernel1. The arbitrage-free condition ensures the existence of a strictly
positive pricing kernel.

The projection of the pricing kernel onto ST is defined as

M(ST ) := E [M|ST ] . (2.4)

1Employing the pricing kernel, the option prices can also be written as

C(K) = E [M(ST −K)+] and P (K) = E [M(K − ST )+] .

Additionally, it is critical to emphasize that the expectation operators in the above option
pricing equations are under the subjective probability measure P.
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We assume that the projected pricing kernel, M(x), is twice differentiable for
any x > 0.

The shape of M(x) is largely controversial. The classical asset pricing the-
ory states that the pricing kernel projected onto the market portfolio decreases
monotonically. However, several researchers have reported that such a theoreti-
cal result is inconsistent with empirical analyses. For example, via an empirical
estimation based on the S&P 500 index, Jackwerth (2000, 2004) and Yamazaki
(2022) obtained tilde-shaped pricing kernels. However, Bakshi et al. (2010) and
Christoffersen et al. (2013) proved that empirical pricing kernels are U-shaped.
Yamazaki (2020) demonstrated that the U-shaped price kernel offers the possi-
bility of explaining the distressed stock puzzles that are anomalous patterns in
financially distressed stock prices. Concurrently, Chaudhuri and Schroder (2015)
reported that empirical pricing kernels projected onto individual stocks exhibited
downward slopes in the whole range. The scope of this paper does not cover the
appropriate shape of a pricing kernel because it may depend on the choice of an
asset onto which the pricing kernel is projected.

Next, the reciprocal of M(x), which Yamazaki (2022) calls the reciprocal
kernel, is defined as

N (x) := 1/M(x). (2.5)

The reciprocal kernel is equivalent to M(x) in effect. However, it is convenient to
apply the reciprocal kernel, N (x), rather M(x). Note that the reciprocal kernel
is also strictly positive and twice differentiable under our assumptions.

3 Subjective probability distributions

This section describes a method to recover the subjective probability distributions
of nonlinear payoffs. While the recovery method discussed below is applicable in a
general context, we focus on option payoffs as an illustrative example of nonlinear
payoffs throughout this section.

3.1 Characteristic functions

We apply the characteristic function approach to recover a subjective probability
distribution. The characteristic function of the distribution is represented as
subjective expected value. To begin, we transform the subjective expectation into
the risk-neutral expectation using the following lemma, which plays a vital role in
our recovery method. For the proof of this lemma, see Appendix A.1 of Yamazaki
(2022).
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Lemma 1 (Yamazaki, 2022) Let H(ST ) be an arbitrary payout depending on
the time-T price of the underlying asset. Then, the subjective expected value of
H(ST ) equals the price of the product of the reciprocal kernel N (ST ) and H(ST ).
That is,

E [H(ST )] =
1

Rf

E∗ [N (ST )H(ST )] .

Next, we utilize a static replication strategy to express the transformed char-
acteristic function as the present value of a static option portfolio. This portfolio
is comprised of plain vanilla options with portfolio weights that are complex-
valued. The following propositions offer the characteristic functions of the sub-
jective probability distributions of call and put option payoffs. For the detailed
proofs of these propositions, refer to Appendix A.

Proposition 1 (Characteristic function of call payoff) Let

ΦC(θ) := E
[
eiθ(ST−K)+

]
, (3.1)

be the characteristic function of the subjective probability distribution of a call
option payoff, where i :=

√
−1 is the imaginary unit. For K > F , it is represented

as follows:

ΦC(θ) = AC(K) + iθN (K)C(K)

+

∫ ∞

K

[
N ′′(x) + 2iθN ′(x)− θ2N (x)

]
eiθ(x−K)C(x)dx, (3.2)

where AC(K) is a function of the strike price K, independent of the parameter
θ, expressed as

AC(K) :=
1

Rf

N (F ) +

∫ F

0

N ′′(x)P (x)dx+

∫ K

F

N ′′(x)C(x)dx. (3.3)

The representation (3.2) demonstrates that the characteristic function of the sub-
jective probability distribution can be expressed as the present value of a static
option portfolio with complex-valued portfolio weights. This portfolio consists of
the the following components: ( i ) a long position in N (F ) units of the risk-free
asset; (ii) a long position inN ′′(x)dx units of put options with all strikes x smaller
than F ; (iii) a long position in N ′′(x)dx units of call options with all strikes x
within the range of (F,K); (iv) a long position in iθN (K) units of a call option
with strike K; (v) a long position in [N ′′(x) + 2iθN ′(x)− θ2N (x)] eiθ(x−K)dx
units of call options with all strikes x larger than K.
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Proposition 2 (Characteristic function of put payoff) Let

ΦP (θ) := E
[
eiθ(K−ST )+

]
, (3.4)

be the characteristic function of the subjective probability distribution of a put
option payoff. For K < F , it is represented as follows:

ΦP (θ) = AP (K) + iθN (K)P (K)

+

∫ K

0

[
N ′′(x)− 2iθN ′(x)− θ2N (x)

]
eiθ(K−x)P (x)dx, (3.5)

where AP (K) is a function of the strike price K, independent of the parameter
θ, expressed as

AP (K) :=
1

Rf

N (F ) +

∫ F

K

N ′′(x)P (x)dx+

∫ ∞

F

N ′′(x)C(x)dx. (3.6)

The representation (3.5) has interpretations similar to those of (3.2).

In the final step, we employ the inverse Fourier transform to derive the subjec-
tive probability density function from the corresponding characteristic function.
Alternatively, we can also apply Gil-Pelaez’s theorem (Wendel, 1961), an inversion
formula, to obtain the cumulative distribution function from the characteristic
function.

3.2 Black-Scholes test

In this subsection, we aim to demonstrate the effectiveness of our recovery method.
To confirm the validity of our approach, we implement a purely numerical simula-
tion within the framework of the Black-Scholes model (Black and Scholes, 1973).
This simulation serves as a preliminary step for the empirical experiment that
will be discussed in Section 4.

Suppose that the projected pricing kernel has the form

M(ST ) = e−δT

(
ST

S0

)−γ

, (3.7)

where δ is the rate of time preference and γ represents the modified coefficient
of relative risk aversion. Under the subjective probability measure P, the Black-
Scholes model is described as

dSt

St

= µdt+ σdWt, (3.8)
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where µ is the expected rate of return on the asset, σ represents the volatility of
the asset, and W is the standard Brownian motion. In equilibrium, the expected
rate of return can be expressed as

µ =
δ

1− γ
+

1

2
σ2γ.

The risk-free interest rate, which serves as the drift term of the Black-Scholes
model under the risk-neutral probability measure Q, can be expressed as

r =
δ

1− γ
− 1

2
σ2γ.

For more information on the above settings, see Yamazaki (2018).
Our purpose is to recover the subjective probability distribution of a straddle

payoff within the framework of the Black-Scholes model (3.8) with the projected
pricing kernel (3.7). The straddle payoff is defined as

(ST − F )+ + (F − ST )+,

where the strike price is set to the forward price F . The characteristic function of
the subjective probability distribution of this payoff is provided in Appendix B.1.
The parameter values used for the test are listed in Table 1. In this setting, the
expected rate of return on the asset, µ, is 3.46%, while the risk-free interest rate,
r, is 2.26%. In all the implementation of this paper, we use MATLAB R2022b as
numerical computation software.

Figure 1 presents the results of the Black-Scholes test, showing the subjec-
tive probability distributions. In Panel A, we exhibit the simulated probability
density function and the recovered probability density function. The simulated
density function is obtained by conducting a Monte Carlo simulation with 1
million samples, while the recovered density function is calculated using our re-
covery method. To obtain the recovered probability density function, we employ
the inverse Fourier transform of the characteristic function (B.1). The numerical
inversion is performed using the Gauss-Kronrod quadrature method implemented
in the MATLAB function quadgk.

In Panel B, we show the simulated cumulative distribution function and the re-
covered cumulative distribution function that are obtained by procedures similar
to those in Panel A. Gil-Pelaez’s theorem in conjunction with the Gauss-Kronrod
quadrature is applied to obtain the recovered cumulative distribution function.

Through the Black-Scholes test, we have effectively demonstrated the efficacy
of our recovery method.
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Figure 1. Subjective probability distributions of straddle payoff
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Panel A exhibits subjective probability density functions of a straddle payoff under the Black-

Scholes model. The simulated probability density function is obtained through a Monte Carlo

simulation with 1 million samples, while the recovered probability density function calculated

using our recovery method. In Panel B, we plot simulated and recovered cumulative distribution

functions under the same setting as in Panel A.
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Table 1. Parameters for Black-Scholes test

S0 δ γ σ T
100 0.02 0.3 0.2 0.5

4 Empirical experiment

This section presents an empirical experiment in which the subjective probability
distribution of agent’s utility is obtained from option prices observed in the real
market, using our recovery method.

4.1 Utility function

We consider a simple single-period consumption-investment problem for a repre-
sentative agent with a utility function, U(x). In this context, the pricing kernel
is given by

M = ξ
U ′(Cop

T )

U ′(Cop
0 )

, (4.1)

where ξ ∈ (0, 1) is the time preference discount factor, and Cop
t is the optimal

consumption for the representative agent at time t ∈ {0, T}. Suppose that the
representative agent has the CRRA-utility function in terms of consumption de-
fined by

U(x) =


a1

x1−η

1− η
+ a2 η ≥ 0, η ̸= 1

log x+ a3 η = 1,

(4.2)

where η is the coefficient of relative risk aversion, and a1, a2, and a3 are some
constants for positive affine transforms. In equilibrium, the terminal optimal
consumption is equal to the terminal total value of the market portfolio, repre-
sented as Cop

T = ST (1 + d). Here, St is the value of the market portfolio at time
t, and d is some constant representing the dividend yield of the market portfolio.
Consequently, the terminal level of the agent’s utility can be viewed as a nonlinear
payoff on the market portfolio. To account for this, we redefine the CRRA-utility
function in terms of the market portfolio as follows.

u(ST ) := U(ST (1 + d)) = U(Cop
T ). (4.3)

The objective of this section is to recover the subjective probability distribution
for the utility function (4.3). For standardization, we set a1, a2, a3 in (4.2) such
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that the utility functions with different coefficients of relative risk aversion take
zero and the same slope at ST = S0. The concrete expressions of a1, a2, and a3 can
be found in Appendix B.2. Figure 2 depicts CRRA-utility functions (η = 1, 3, 5),
including the risk-neutral case (η = 0), as used in our empirical experiment.

In this setting, the reciprocal kernel is given by

N (ST ) = Gηgη(ST ),

where gη(x) = xη and Gη is a constant defined by

Gη := ξ−1

(
1 + d

Cop
0

)η

.

To determine the value ofGη, it is not essential to have prior knowledge of the time
preference discount factor ξ and the initial optimal consumption Cop

0 . Yamazaki
(2022) proposed a method to obtain this value using the following formula.

1

Gη

=
1

Rf

gη(F ) +

∫ F

0

g′′η(x)P (x)dx+

∫ ∞

F

g′′η(x)C(x)dx.

The characteristic function of the subjective probability distribution for the
utility function (4.3) is defined as

Φu(θ) := E
[
eiθu(ST )

]
. (4.4)

See Appendix B.3 for the static portfolio representation of the characteristic func-
tion (4.4). We apply the numerical inversion of the characteristic function (4.4) to
obtain the subjective probability density function of the agent’s utility, employing
the same numerical procedure as described in Section 3.2.

4.2 Data and results

In our empirical experiment, we consider the S&P 500 index as the market port-
folio. The data for plain vanilla options on the S&P 500 index were obtained from
the Cboe DataShop website2. We downloaded the Black-Scholes implied volatil-
ities based on end-of-day options mid quotes from the Chicago Board Options
Exchange. The dataset comprises implied volatilities of virtual S&P 500 index
options with constant maturities and various strikes defined by moneyness.

For our experiment, we selected implied volatilities with a maturity of 180 days
observed on December 19, 2011, and January 30, 2019. The former represents a
case of relatively high volatility, while the latter represents a case of relatively low

2https://datashop.cboe.com/option-eod-summary
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Figure 2. CRRA-utility functions

Figure 2 depicts CRRA-utility functions with different coefficients of relative risk aversion,

η = 0, 1, 3, 5. To ensure that these utility functions take zero and the same slope at ST /S0 = 1,

we apply positive affine transforms to them.

volatility. Figure 3 displays the implied volatilities observed on these two specific
trading days.

Following the approach introduced by Yamazaki (2022), we utilize a quadratic
polynomial approximation to construct an end-of-day implied volatility curve.
This curve is obtained by fitting observed implied volatilities with respect to
moneyness using the least-squares method. The resulting implied volatility curve
is then incorporated into the Black-Scholes option pricing formula to calculate
the option prices required for the recovery formula.

It is important to acknowledge that this interpolation method may not be the
optimal choice for capturing the intricacies of observed implied volatilities. How-
ever, alternative interpolation and extrapolation methods, such as cubic spline
interpolation and piecewise Hermite interpolation, have been found to lead to
overfitting and fail to recover a smooth single-peak probability density function.
Consequently, the quadratic polynomial approximation is employed to strike a
balance between simplicity and avoiding overfitting issues3.

The interest rate data required for the Black-Scholes option pricing formula
and the gross return on the risk-free asset are obtained from the U.S. Department

3Upon request, we can provide the experiment results in the cases that cubic spline inter-
polation and piecewise Hermite interpolation are applied to construct implied volatility curves.
However, these results have not exhibited the desired level of subjective density functions, as
anticipated.
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of the Treasury website4. To obtain the implied dividend yields of the S&P 500
index, which are used as the dividend yield d, we employ the put-call parity based
on near-the-money option prices. This procedure is consistent with the approach
employed by Aı̈t-Sahalia and Lo (1998) and Polkovnichenko and Zhao (2013).

Figure 3. Implied volatilities of options on S&P 500 index

Figure 3 plots the implied volatilities of options on the S&P 500 index, as observed on December

19, 2011, and January 30, 2019. The dataset is sourced from Cboe DataShop.

Figure 4 exhibits the subjective probability density functions of agent’s utility
in terms of the level of the S&P 500 index. These density functions are derived
using our recovery method. Panel A displays the subjective probability density
functions with η = 0, 1, 3, 5, obtained from the S&P 500 implied volatilities ob-
served on December 19, 2011, while Panel B exhibits the density functions based
on data from January 30, 2019.

It is important to note that the representative agent exhibits not only different
forms of utility functions but also distinct subjective probability distributions
of the future level of the S&P 500 index level, depending on the coefficient of
relative risk aversion η. For example, as the representative agent becomes more
risk-averse, the subjective expected return on the S&P 500 index increases. For
more details on the characteristics of the subjective probability distributions of
the level of the S&P 500 index, refer to Yamazaki (2022). Additionally, as the
representative agent becomes more risk-averse, the marginal utility diminishes at
a faster rate. Consequently, the recovered subjective probability distributions of
agent’s utility are depicted in Figure 4.

4https://home.treasury.gov
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The presence of wavy right tails in the probability density functions observed
in Panel B can be attributed to instability in the numerical Fourier inversion. We
acknowledge that addressing this issue remains an open problem in our research.

5 Conclusion

In this research, we develop a general method for recovering the subjective prob-
ability distribution of the nonlinear payoff of a financial asset. We demonstrate
that the characteristic function of the subjective probability distribution can be
expressed as the present value of a static option portfolio with complex-valued
portfolio weights. The subjective probability distribution can be obtained using
a numerical inversion technique. To validate our recovery method, we conduct a
Black-Scholes test that confirms its ability to accurately estimate the subjective
probability distribution of a straddle payoff. Furthermore, we conduct an empir-
ical experiment using implied volatilities of the S&P 500 index to estimate the
subjective probability distribution of agent’s utility.

This research contributes a valuable framework for understanding subjective
probability distributions and their implications for financial analysis and decision-
making. However, we acknowledge that our recovery method is currently limited
in its application, specifically in cases where the nonlinear payoffs are contingent
on the terminal price of an asset. Future research directions include extending
our method to recover the subjective probability distribution of path-dependent
payoffs, such as variance swaps, which involve payoffs dependent on the real-
ized variance of an underlying asset, as well as time-inseparable utility functions,
which capture preferences that are not solely determined by the terminal wealth.
These are examples of payoffs that depend on the path taken by the underlying
asset, and expanding our method to encompass these scenarios will broaden its
applicability and significance.

A Proofs

A.1 Proof of Proposition 1

Let G(ST ) := eiθ(ST−K)+ and g(ST ) := N (ST )G(ST ). According to Carr and
Madan (1998), the following holds:

g(ST ) = g(F ) + g′(F )(ST − F ) +

∫ F

0

g′′(x)(x− ST )+dx+

∫ ∞

F

g′′(x)(ST − x)+dx.
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Figure 4. Subjective probability distributions of agent’s utility

Panel A: December 19, 2011

Panel B: January 30, 2019

Figure 4 exhibits the subjective probability density functions for CRRA-utility functions as

they relate to the level of the S&P 500 index. These density functions are obtained using our

recovery method, which utilizes the numerical Fourier inversion. Panel A depicts the density

functions derived from the S&P 500 implied volatilities observed on December 19, 2011, while

Panel B shows those based on the data from January 30, 2019.
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Employing Lemma 1 and K > F , the subjective expected value of G(ST ) can be
expressed as follows:

E [G(ST )] =
1

Rf

E∗ [g(ST )]

=
1

Rf

g(F ) +

∫ F

0

g′′(x)P (x)dx+

∫ ∞

F

g′′(x)C(x)dx. (A.1)

Note that

g′′(x) =
{
N ′′(x) +

[
2iθN ′(x)− θ2N (x)

]
1{x>K} + iθN (x)δ(x−K)

}
G(x),

where δ(x) is the Dirac delta function. Therefore, the following is obtained:∫ F

0

g′′(x)P (x)dx =

∫ F

0

N ′′(x)G(x)P (x)dx

+

∫ F

0

[
2iθN ′(x)− θ2N (x)

]
1{x>K}G(x)P (x)dx

+

∫ F

0

iθN (x)δ(x−K)G(x)P (x)dx

=

∫ F

0

N ′′(x)P (x)dx, (A.2)

and ∫ ∞

F

g′′(x)C(x)dx =

∫ ∞

F

N ′′(x)G(x)C(x)dx

+

∫ ∞

F

[
2iθN ′(x)− θ2N (x)

]
1{x>K}G(x)C(x)dx

+

∫ ∞

F

iθN (x)δ(x−K)G(x)C(x)dx

=

∫ K

F

N ′′(x)C(x)dx+

∫ ∞

K

N ′′(x)eiθ(x−K)C(x)dx

+

∫ ∞

K

[
2iθN ′(x)− θ2N (x)

]
eiθ(x−K)C(x)dx

+ iθN (x)C(x). (A.3)

Substituting (A.2) and (A.3) into (A.1) yields (3.2). □
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A.2 Proof of Proposition 2

Let H(ST ) := eiθ(K−ST )+ and h(ST ) := N (ST )H(ST ). Similar to the proof of
Proposition 2, the subjective expected value ofH(ST ) forK < F can be expressed
as follows:

E [H(ST )] =
1

Rf

E∗ [h(ST )]

=
1

Rf

h(F ) +

∫ F

0

h′′(x)P (x)dx+

∫ ∞

F

h′′(x)C(x)dx. (A.4)

Note that

h′′(x) =
{
N ′′(x)−

[
2iθN ′(x) + θ2N (x)

]
1{x≤K} + iθN (x)δ(x−K)

}
H(x).

Therefore, the following is obtained:∫ F

0

h′′(x)P (x)dx =

∫ F

0

N ′′(x)H(x)P (x)dx

−
∫ F

0

[
2iθN ′(x) + θ2N (x)

]
1{x≤K}H(x)P (x)dx

+

∫ F

0

iθN (x)δ(x−K)H(x)P (x)dx

=

∫ K

0

N ′′(x)eiθ(K−x)P (x)dx+

∫ F

K

N ′′(x)P (x)dx

−
∫ K

0

[
2iθN ′(x) + θ2N (x)

]
eiθ(K−x)P (x)dx

+ iθN (x)P (x), (A.5)

and ∫ ∞

F

h′′(x)C(x)dx =

∫ ∞

F

N ′′(x)H(x)C(x)dx

−
∫ ∞

F

[
2iθN ′(x) + θ2N (x)

]
1{x≤K}H(x)C(x)dx

+

∫ ∞

F

iθN (x)δ(x−K)H(x)C(x)dx

=

∫ ∞

F

N ′′(x)C(x)dx. (A.6)

Substituting (A.5) and (A.6) into (A.4) yields (3.5). □
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B Supplements

B.1 Characteristic function of straddle payoff

Let

ΦStr(θ) := E
[
eiθ[(ST−F )+ +(F−ST )+]

]
,

be the characteristic function of the subjective probability distribution of a strad-
dle payoff with strike price F . It can be expressed as follows:

ΦStr(θ) =
1

Rf

N (F ) + 2iθN (F )C(F )

+

∫ F

0

[
N ′′(x)− 2iθN ′(x)− θ2N (x)

]
eiθ(F−x)P (x)dx

+

∫ ∞

F

[
N ′′(x) + 2iθN ′(x)− θ2N (x)

]
eiθ(x−F )C(x)dx. (B.1)

The representation (B.1) can be derived by a similar procedure to that employed
in Propositions 1 and 2.

B.2 Positive affine transform of CRRA-utility functions

We set

a1 = [S0(1 + d)]η−1 , a2 = − 1

1− η
, a3 = − log S0(1 + d),

to ensure that CRRA-utility functions with different coefficients of relative risk
aversion take zero and the same slope at ST = S0. Note that the slope is 1/S0.

B.3 Characteristic function of agent’s utility

The characteristic function of the subjective probability distribution for CRRA-
utility function (4.4) can be expressed as follows:

Φu(θ) =
1

Rf

N (F )eiθu(F ) +

∫ F

0

Ψ(x, θ)P (x)dx+

∫ ∞

F

Ψ(x, θ)C(x)dx, (B.2)

where

Ψ(x, θ) :=
{
N ′′(x) + 2iθu′(x)N ′(x) +

[
iθu′′(x)− θ2u′(x)2

]
N (x)

}
eiθu(x).

Note that

N ′(x) = ηGηx
η−1, N ′′(x) = η(η − 1)Gηx

η−2,
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and

u′(x) = Sη−1
0 x−η, u′′(x) = −ηSη−1

0 x−η−1.

The representation (B.2) can be derived by a similar procedure to that employed
in Propositions 1 and 2.

References

[1] Aı̈t-Sahalia, Yacine and Lo, Andrew. Nonparametric estimation of state-
price densities implicit in financial asset prices. Journal of Finance,
53(2):499–547, 1998.

[2] Bakshi, Gurdip., Kapadia, Nikunj., and Madan, Dilip. Stock return charac-
teristics, skew laws, and the differential pricing of individual equity options.
Review of Financial Studies, 16(1):101–143, 2003.

[3] Bakshi, Gurdip., Madan, Dilip., and Panayotov, George. Returns of claims
on the upside and the viability of U-shaped pricing kernels. Journal of
Financial Economics, 97(1):130–154, 2010.

[4] Black, Fischer and Scholes, Myron. The pricing of options and corporate
liabilities. Journal of Political Economy, 81(3):637–654, 1973.

[5] Bliss, Robert R and Panigirtzoglou, Nikolaos. Option-implied risk aversion
estimates. Journal of Finance, 59(1):407–446, 2004.

[6] Bondarenko, Oleg. Why are put options so expensive? Quarterly Journal of
Finance, 4(3):1450015, 2014.

[7] Carr, Peter and Lewis, Keith. Corridor variance swaps. Risk, 17(2):67–72,
2004.

[8] Carr, Peter and Madan, Dilip. Towards a theory of volatility trading. In
Robert. Jarrow, editor, Volatility, pages 417–427. Risk Publications, 1998.

[9] Carr, Peter and Wu, Liuren. Static hedging of standard options. Journal of
Financial Econometrics, 12(1):3–46, 2014.

[10] Carr, Peter., Ellis, Katrina., and Gupta, Vishal. Static hedging of exotic
options. Journal of Finance, 53(3):1165–1190, 1998.

[11] Chabi-Yo, Fousseni and Loudis, Johnathan. The conditional expected mar-
ket return. Journal of Financial Economics, 137(3):752–786, 2020.

20



[12] Chaudhuri, Ranadeb and Schroder, Mark. Monotonicity of the stochastic
discount factor and expected option returns. Review of Financial Studies,
28(5):1462–1505, 2015.

[13] Christoffersen, Peter., Heston, Steven., and Jacobs, Kris. Capturing option
anomalies with a variance-dependent pricing kernel. Review of Financial
Studies, 26(8):1963–2006, 2013.

[14] Coval, Joshua and Shumway, Tyler. Expected option returns. Journal of
Finance, 56(3):983–1009, 2001.

[15] Cuesdeanu, Horatio and Jackwerth, Jens Carsten. The pricing kernel puzzle:
Survey and outlook. Annals of Finance, 14(3):289–329, 2018.

[16] Demeterfi, Kresimir., Derman, Emanuel., Kamal, Michael., and Zou, Joseph.
A guide to volatility and variance swaps. Journal of Derivatives, 6(4):9–32,
1999.

[17] Fink, Jason. An examination of the effectiveness of static hedging in the
presence of stochastic volatility. Journal of Futures Markets, 23(9):859–890,
2003.

[18] Jackwerth, Jens Carsten. Recovering risk aversion from option prices and
realized returns. Review of Financial Studies, 13(2):433–451, 2000.

[19] Jackwerth, Jens Carsten. Option-implied risk-neutral distributions and risk
aversion. Charlotteville: Research Foundation of AIMR, 2004.

[20] Jackwerth, Jens Carsten and Menner, Marco. Does the Ross recovery theo-
rem work empirically? Available at SSRN 2960733, 2018.

[21] Martin, Ian. What is the expected return on the market? Quarterly Journal
of Economics, 132(1):367–433, 2017.

[22] Nalholm, Morten and Poulsen, Rolf. Static hedging and model risk for barrier
options. Journal of Futures Markets, 26(5):449–463, 2006.

[23] Ohsaki, Shuichi and Yamazaki, Akira. Static hedging of defaultable con-
tingent claims: A simple hedging scheme across equity and credit markets.
International Journal of Theoretical and Applied Finance, 14(2):239–264,
2011.

[24] Polkovnichenko, Valery and Zhao, Feng. Probability weighting functions
implied in options prices. Journal of Financial Economics, 107(3):580–609,
2013.

21



[25] Ross, Steve. The recovery theorem. Journal of Finance, 70(2):615–648, 2015.

[26] Takahashi, Akihiko and Yamazaki, Akira. A new scheme for static hedging of
European derivatives under stochastic volatility models. Journal of Futures
Markets, 29(5):397–413, 2009a.

[27] Takahashi, Akihiko and Yamazaki, Akira. Efficient static replication of Eu-
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