
PDF issue: 2024-05-27

Research on Deep Learning for
Artificially Controllable Image
Synthesis

ZHANG, Zhiqiang

(開始ページ / Start Page)
1

(終了ページ / End Page)
114

(発行年 / Year)
2023-09-15

(学位授与番号 / Degree Number)
32675甲第586号

(学位授与年月日 / Date of Granted)
2023-09-15

(学位名 / Degree Name)
博士(工学)

(学位授与機関 / Degree Grantor)
法政大学 (Hosei University)
(URL)
https://doi.org/10.15002/00030035



Research on Deep Learning for Artificially
Controllable Image Synthesis

Zhiqiang Zhang



Doctoral Dissertation Reviewed by

Hosei University

Research on Deep Learning for Artificially

Controllable Image Synthesis

Zhiqiang Zhang



Contents

Abstract iv

Acknowledgements vii

List of Publications viii

1 Introduction 1

1.1 Problem Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Objective and Specific Scheme . . . . . . . . . . . . . . . . . 3

1.3 Overview of the Proposed Methods . . . . . . . . . . . . . . . . . . . . 4

1.4 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 High Quality Oriented Image Synthesis Methods 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Generative Adversarial Networks . . . . . . . . . . . . . . . . . 10

2.3.2 Image-Text Matching . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.3 Introduction to Experimental Datasets . . . . . . . . . . . . . . 12

2.3.4 Introduction to Evaluation Methods . . . . . . . . . . . . . . . . 13

2.4 Method 1 — DrawGAN: Text to Image Synthesis with Drawing Gener-

ative Adversarial Networks . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

i



2.5 Method 2 — Text-to-Image Synthesis: Starting Composite from the

Foreground Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.2 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Method 3 — Text to Image Synthesis with Erudite Generative Adver-

sarial Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6.1 Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6.2 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 51

2.6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.7 Internal Comparison of Proposed Methods . . . . . . . . . . . . . . . . 55

2.7.1 Qualitative Comparison . . . . . . . . . . . . . . . . . . . . . . 55

2.7.2 Quantitative Comparison . . . . . . . . . . . . . . . . . . . . . . 56

2.8 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 High Controllability Oriented Image Synthesis Methods 58

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Method 1 — Customizable GAN: A Method for Image Synthesis of

Human Controllable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.1 Network Sturcture . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.2 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Method 2 — TCGIS: Text and Contour Guided artificially controllable

Image Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

ii



3.4.1 Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4.2 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 82

3.4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5 Internal Comparison of Proposed Methods . . . . . . . . . . . . . . . . 85

3.6 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 High Practicality Oriented Image Synthesis Methods 87

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Text-guided Image Manipulation based on Sentence-aware and Word-

aware Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.2 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Image Synthesis Methods with High Practicality . . . . . . . . . . . . . 98

4.4.1 Text-guided Image Synthesis and Manipulation . . . . . . . . . 98

4.4.2 Text-guided Controllable Image Synthesis and Manipulation . . 100

4.5 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Conclusion 102

List of Abbreviations 113

iii



Abstract

Image synthesis has been one of the most important topics in computer vision research.

In recent years, with the rise of artificial intelligence, research in the image synthesis

field has made many breakthroughs. Especially the introduction of deep learning has

made the field advance by leaps and bounds, the most notable of which is generative

adversarial networks (GAN). However, since the input received by GAN is randomly

generated Gaussian distribution noise, this makes the image synthesis process artifi-

cially uncontrollable, resulting in poor practicability of the whole method. In order to

solve this problem, in recent years, text-to-image synthesis (T2I) has been proposed

and gained extensive attention. T2I generates corresponding images through simple,

intuitive, and easy-to-enter text information. Due to the text information conforming

to people’s input habits, this method can realize the artificially controllable image syn-

thesis effect to a certain extent. Nevertheless, T2I still faces the following challenges:

1) The quality of image synthesis needs to be further improved. Quality is reflected in

the realism of the synthesized content. The current T2I methods still produce poorly

realistic image results, so the overall quality needs to be improved. 2) The controlla-

bility of the image synthesis process needs to be further improved. Controllability is

reflected in the control degree over the synthetic content. By using text information,

the current T2I methods can only control the basic content of the synthesized object

but cannot control the shape, size, and position information of the synthesized object,

so the overall controllability is insufficient. 3) The overall practicability of the image

synthesis method needs to be further improved. Practicality is reflected in the appli-

cation degree of the synthetic method. The current T2I methods can synthesize the

corresponding image based on the input text, but it cannot continue to input new text

to modify the content of the generated image, which makes the overall practicability

of the current method insufficient.

Facing the above challenges, this research is committed to realizing the artificial
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controllable image synthesis method in the whole process, which is divided into three

parts: 1) Developing better T2I methods to achieve higher-quality image results; 2)

Developing controllable image synthesis methods to improve the controllability of the

synthesis process; 3) Based on the first and second parts, introduce the image manip-

ulation method to achieve controllable image synthesis and manipulation with high

quality, thereby further improving the practicability of the synthesis method.

In the first part, we propose three methods to achieve higher-quality image synthesis

results. The basic idea of the first method is to synthesize simple contour information

at first, and then synthesize foreground content, and then synthesize the final image

result; The basic idea of the second method is first to synthesize the foreground content

based on the text information, and then synthesize the final image result based on

the synthesized foreground and the input text information. The basic idea of the

third method is to introduce additional image discrimination types into the GAN’s

discriminator to improve its discriminative ability, and then better discriminant is

fed back to the generator to improve the quality of the synthesis result. Extensive

experimental results have proved that the three methods proposed above all achieve

higher-quality image synthesis results.

In the second part, we propose a more controllable approach to image synthesis.

Specifically, text description and simple contour information are used to synthesize

corresponding image results, where text description can control the synthesis content,

contour information can control the basic shape and position of the synthesized object,

and both text and contour information can be manually input. Therefore, using text

and contour information to synthesize the corresponding image has better controllabil-

ity. In this idea, we proposed two network structures. The first is to simply combine

text and contour information, and then achieve corresponding image synthesis through

the residual and upsampling operations. This method preliminarily achieves the effect

of controllable image synthesis, but the overall quality of the synthesis is mediocre.
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Therefore, the second network structure is proposed. The core of the second structure

is to introduce an attention mechanism to fine-tune the synthesis result to improve the

quality of image synthesis. Experimental results demonstrate that our proposed sec-

ond network structure achieves better controllable and higher-quality image synthesis

results.

In the third part, the core is to introduce the image manipulation method on top

of the first and second parts to form the high practicality image synthesis methods.

Therefore, we first propose a text-guided image manipulation (TGIM) method. The

basic idea of this method is to design a sentence-aware and word-aware network struc-

ture to achieve better image manipulation effects. After that, by fusing the proposed

text-guided image manipulation method and the image synthesis methods proposed

in the first and second parts, we finally achieve the text-guided image synthesis and

manipulation and text-guided controllable image synthesis and manipulation methods.

The former allows the input text manually to synthesize the corresponding image, and

then continue to input new text manually to modify the content of the synthesized

image. The latter allows input text and simple contour information artificially to syn-

thesize the corresponding image result, and then can artificially continue to input new

text to modify the content of the previously synthesized image. From the experimental

results, these two methods have achieved good practicability. In contrast, the second

approach has better human controllability and practicability because it can control

the basic content of image synthesis and the shape and position information of the

synthetic object at the beginning.
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Chapter 1

Introduction

1.1 Problem Introduction

In computer vision, image synthesis has always been a widely concerned research field.

Due to the rapid development of deep learning, many breakthroughs have been made

in the field of image synthesis, especially the recent introduction of Generative Adver-

sarial Networks (GAN) [1], which has obtained many encouraging results in this field.

Nevertheless, the traditional GAN only uses the noise vectors obtained by Gaussian

or uniform distribution for image synthesis, making the image synthesis category of

the training model entirely dependent on training datasets. For example, when using

the bird image dataset for training, the corresponding training model can synthesize

the bird images, and when using the flower image dataset, the model can generate the

flower images. Therefore, using only noise vectors as input leads to the trained model

not having good flexibility and controllability.

In order to solve this problem, conditional Generative Adversarial Networks

(CGAN) [2] is proposed. CGAN introduces conditional variables into the input

to achieve reasonable control of composite image types. For example, using the

image category of birds or flowers in training, the trained model can generate the

corresponding bird or flower images. CGAN achieves the flexibility and controllability

required in image synthesis to a certain extent. However, CGAN can only determine

the specific type of the synthesis image through the category label but cannot

determine the specific content of the composite image. For example, the category

label ‘bird’ is input, the model can synthesize a bird image, but the specific color,

size, and other information of the bird can not be determined. To further improve
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the overall flexibility and control of image synthesis, text-to-image synthesis (T2I)

research has been proposed. The T2I can synthesize the corresponding image results

by inputting the text description. The text includes more basic information so that it

can determine the specific content of the composite image. For example, input a text

description “this grey bird has an impressive wingspan, a grey bill, and a white stripe

that surrounds the feathers near the bill”, and the model can synthesize image results

related to the semantic information of the input text. Hence text-to-image synthesis

research has better flexibility and controllability. Besides, it has tremendous potential

applications, such as computer-aided design, art generation, image editing, video

games, and so on. Based on the above reasons, the T2I research field has received

extensive attention at present.

At present, many promising results have been achieved in T2I research. Reed et

al. [3] first proposed an end-to-end GAN structure and realized the image synthesis

from the text description. However, the overall clarity and authenticity of synthesized

images are poor in this work. To further improve the quality of the synthesized image,

many improved methods have been proposed later. Zhang et al. [4][5] proposed a stack

generation method and achieved high-quality synthesis results. Xu et al. [6] introduced

the attention mechanism to obtain high-resolution results. Then, the methods of hier-

archical nesting [7], mirror text comparison [8], and prior knowledge guidance [9] were

proposed and achieved higher-quality image results. Although the current T2I methods

have achieved encouraging results, there is still room for improvement in the quality

of synthetic images. Hence the study of T2I is still challenging. In addition, the text

description can only control the basic information of the synthesized image, but it is

powerless to synthesize the shape, position, and other information of the synthesized

object, which makes the existing T2I methods still insufficient at the level of human

controllability. Furthermore, in terms of practicability, the existing T2I methods can

only synthesize corresponding image results based on one input text description, and
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cannot continue to input text information to modify the content of the generated image,

which makes the practicability of the existing T2I methods mediocre.

1.2 Research Objective and Specific Scheme

In view of the three problems existing in the existing T2I method (the quality of image

synthesis needs to be further improved; the controllability of the synthesis method is

still insufficient; and the practicability of the synthesis process is mediocre), this re-

search is dedicated to realizing a highly artificially controllable image synthesis method,

which can achieve higher synthesis quality and have better controllability and practi-

cability, so as to promote the development of artificially controllable image synthesis

towards practical applications.

Problems in T2I

Current
problems

the quality of image
synthesis needs to be

further improved

the controllability of the
synthesis method is still

insufficient

the practicability of the
synthesis method is

mediocre

Design better T2I structures to
achieve better quality synthesis

effects

Realize text-based and contour-
based controllable image synthesis

Realize continuously image
synthesis and manipulation effect

Solutions in our
scheme

Form a highly artificially
controllable image synthesis

method

Quality

Controllability

Practicability

Figure 1.1: For the existing problems of T2I, our specific research scheme is shown in
the figure above.

To achieve our research objective, the specific scheme is shown in Fig. 1.1. For the

problem that the quality needs to be improved, we aim to design better T2I structures

to improve the quality of image synthesis. For the problem that the controllability

is still insufficient, we aim to design a controllable image synthesis method based on

text and contour information to achieve a more controllable synthesis effect. For the

problem of the mediocre practicality of current synthesis methods, we aim to achieve

a continuous image synthesis and manipulation effect to further improve the practica-
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bility of the method. Overall, the whole scheme is divided into three parts, namely

improving the quality of synthesis, improving the controllability of synthesis, and im-

proving the practicability of the method. The research of the above three parts can

not only better solve the problems existing in T2I, but also form a highly artificially

controllable image synthesis method by combining the research of these three parts.

1.3 Overview of the Proposed Methods

The core of our research scheme includes three parts: improving quality, improving

controllability, and improving practicability. The overview of our proposed methods in

each part is shown in Fig. 1.2.

Improve 
quality

Text-to-Image Synthesis:
Starting Composite from the

Foreground Content

DrawGAN: Text to Image
Synthesis with Drawing
Generative Adversarial

Networks

Text to Image Synthesis with
Erudite Generative Adversarial

Networks

Improve 
controllability

Improve 
practicability

Customizable GAN: a method
for image synthesis of human

controllable

TCGIS: Text and Contour
Guided artificially controllable

Image Synthesis

Text-guided Image
Manipulation based on

Sentence-aware and Word-
aware Network

Text-Guided Image Synthesis
and Manipulation

Text-Guided Customizable
Image Synthesis and

Manipulation

Figure 1.2: The method overview corresponding to each part of our proposed scheme
is shown above.

In the part of improving quality, we have proposed three methods, namely Draw-

GAN: Text to Image Synthesis with Drawing Generative Adversarial Networks; Text-

to-Image Synthesis: Starting Composite from the Foreground Content; Text to Image

Synthesis with Erudite Generative Adversarial Networks. The basic idea of the first

method is to simulate painting process. Specifically, synthesize the contour information

based on the text at first, then synthesize the foreground information, and then syn-

thesize the final image result. The basic idea of the second method is to synthesize the

foreground content based on the text information, and then synthesize the final image
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result. The basic idea of the third method is to improve its discriminative ability by

introducing additional discriminative types in the discriminator, so as to promote the

improvement of the generator’s generation ability and achieve better quality synthesis.

In the part of improving controllability, we have proposed two methods, namely

Customizable GAN: a method for image synthesis of human controllable; TCGIS:

Text and Contour Guided artificially controllable Image Synthesis. The first method

synthesizes corresponding image results by simply fusing text and contour information;

The second method introduces some more complex information processing modules

(such as attention mechanism, affine combination module, etc.) based on the first

method so as to achieve a better customizable synthesis effect.

In the part of improving practicability, we have proposed a TGIM method at first,

namely Text-guided Image Manipulation based on Sentence-aware and Word-aware

Network. The proposed method has achieved a better image manipulation effect by

introducing sentence-aware and word-aware network. After that, the proposed TGIM

method integrates the methods proposed in the first and second parts to achieve two

highly human-controllable image synthesis methods. The first method is to first syn-

thesize the corresponding image based on the text, and then continue to input text to

continuously modify the content of the synthesized image. The second method allows

humans to input text and contour to achieve customized image synthesis initially, and

then allows humans to continue to input new text to modify the synthesized image

content so that the synthesis results are more conform with human subjective wishes.

1.4 Main Contributions

This research focuses on solving the problems of existing T2I methods and is commit-

ted to realizing a highly human-controllable image synthesis method with satisfactory

practicability. Fig. 1.2 shows that our proposed method is mainly composed of three

parts, and the main contribution of each part is as follows:

5



Improve quality. To further improve the synthesis quality of T2I, we propose

three methods. Extensive experimental verifications show that each proposed method

achieves higher-quality image results, which further promotes the development of the

T2I field while solving the existing problem.

Improve controllability. In order to solve the problem of insufficient controllabil-

ity of existing synthesis methods, we propose two controllable image synthesis methods.

The core is to allow human input of text and simple contour information to achieve

controllable image synthesis. Experimental results demonstrate the effectiveness of our

proposed method. Furthermore, our proposed method facilitates the development of

image synthesis toward human controllability.

Improve practicability. In order to improve the practicality of the synthesis

method, we first propose a TGIM method, which can modify the image’s content

based on the text information. Then, combining this method with the previously

proposed methods can achieve the effect of manipulating the content of the generated

image. Finally, two highly human-controllable and practical image synthesis methods

are realized, which greatly promotes the development of the practical image synthesis

field.

1.5 Dissertation Outline

This dissertation is composed of four main chapters. Each chapter is a complete and

independent research that could be read separately by the readers. This chapter intro-

duces the problems existing in the existing T2I methods, indicates the main objective

and basic scheme of the research, and gives a preliminary overview of the methods in

the scheme.

In Chapter 2, three T2I methods we propose are introduced in detail. Specifically,

the network structure of each method is introduced in detail, and corresponding exten-

sive experimental results are shown to demonstrate the effectiveness of the proposed
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method in terms of improving synthesis quality.

Chapter 3 presents our proposed controllable image synthesis method. In this part,

two controllable image synthesis methods are proposed and the corresponding network

structures and experimental results are shown in detail.

Chapter 4 first presents our proposed TGIM method and corresponding experimen-

tal results, and then presents the corresponding experimental results after combining

the proposed TGIM method with the previously proposed image synthesis methods.

Chapter 5 presents the conclusion of this dissertation.
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Chapter 2

High Quality Oriented Image Syn-

thesis Methods

2.1 Introduction

Compared with the traditional method of image synthesis using generative adversar-

ial networks (GAN) [1], using category labels or attributes in conditional generative

adversarial networks (CGAN) [2] makes the generation more flexible and controllable.

However, CGAN can only determine the category of synthetic objects and cannot de-

termine the specific details. Recently, text-to-image synthesis has attracted more and

more attention due to its high flexibility and has a wide range of application prospects,

such as scene restoration, computer-aided design, etc. On the one hand, it defines

the specific details of the synthetic image. On the other hand, the text description

conforms to people’s input habits, making the whole task highly flexible.

Reed et al. [3] first proposed end-to-end generative adversarial networks and suc-

cessfully realized the task of text-to-image synthesis. This structure has played a proper

role in the synthesis of simple and complex images. However, in terms of the synthesis

results’ quality, the overall resolution and authenticity are low. To further improve the

resolution and authenticity of the results, Zhang et al. [4] [5] and Xu et al. [6] put

forward the idea of stack generation and attention mechanism fine-tuning, respectively.

Their results have been greatly improved in resolution and authenticity. Then, [7] [9]

[8] [10] [11] based on the idea of stack synthesis or attention mechanism, more effective

text or image processing modules are introduced to achieve better results. Although

these methods have achieved excellent results, there is still a gap between the quality
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of generated images and real images in the task of text-to-image synthesis.

2.2 Related Works

Image Synthesis. Effective construction of image generation modeling is the funda-

mental problem in computer vision. For image synthesis research, the core task is to

establish a useful image generation model to synthesize more realistic image results.

There has been remarkable progress in the image synthesis field with the emergence of

deep learning techniques. Variational Autoencoders (VAE) [12] utilized a probability

graph model to achieve a better generation by maximizing the lower bound of data

likelihood. Generative Adversarial Networks (GAN) achieved remarkable image syn-

thesis results through adversarial learning. For example, Salimans et al. [13] proposed

the ImprovedGAN that can enhance the stability of results by passing the discrimi-

nator learning characteristics to the generator. DCGAN proposed by Radford et al.

[14] combined GAN and CNN (Convolutional Neural Networks) together, and it has a

promising performance in obtaining high-quality images. Gnanha et al. [15] proposed a

parameterized robust loss function, which solves the problems of mode collapse and un-

stable training in GAN, and achieves higher quality image synthesis results. Although

these GAN structures can obtain stunning image synthesis results, their original in-

puts are only noise vectors obtained by Gaussian or uniform distribution, so the overall

flexibility and human controllability of these models are poor. In order to solve this

problem and make the image synthesis model more useful, conditional image synthe-

sis research has been explored. The initial condition generation model is based on

simple image attributes (such as category labels [2] or sketch information [16][17]) to

achieve effective control synthesis. After that, some works try to generate images based

on images (pixel to pixel), including image style conversion [18][19][20], image super-

resolution [21][22][23], image editing [24][25], and so on. However, because the input

is images, these image synthesis methods’ overall flexibility is poor, and the degree of
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artificial controllability is low. In order to achieve a more flexible and effective image

synthesis, image synthesis based on text description is proposed.

Text-to-Image Synthesis. Since the input of text-to-image synthesis research is

the text description that more conforms to people’s input habits, this research field has

better flexibility. Reed et al. [3] first proposed an end-to-end text-to-image synthesis

structure, which can determine the composite image’s content information through the

input text description. After that, in order to further improve the quality of text-

to-image synthesis, multi-stage synthesis [4][5] and attention mechanism [6] methods

are proposed and achieved pretty results. Based on the multi-stage synthesis and

attention mechanism methods, many improved methods [7][8][9][10][26][27][28][11][29]

have been proposed and further improve the quality of synthesis results. Although

these methods have achieved stunning results, the overall synthesis quality can still be

further improved. Unlike these improvement methods that focus on the external image

or text coding module, our method’s idea is to generate the refined foreground results

based on the text description and then synthesize the final image results based on the

generated foreground content. The refined foreground results can better promote the

synthesis of the final results, thus generating higher-quality synthetic images.

2.3 Preliminaries

2.3.1 Generative Adversarial Networks

Generative Adversarial Networks consist of a generator G and a discriminator D. The

performance of G and D can be improved simultaneously through adversarial learning.

Among them, the goal of G is to synthesize the data distribution similar to the original

data so that it can deceive D into believing, while the goal of D is not to be deceived by
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G. The specific process is a min-max game. The corresponding equation is as follows:

min
G

max
D

V (D,G) =
∑

x∼pdata
[logD(x)]

+
∑

z∼pz
[log(1−D(G(z)))],

(2.1)

where x and z are the original data and noise vectors, respectively. Pdata and Pz

are the distribution of the original data and Gaussian, respectively. log represents log

means logarithmic function. min
G

indicates that the image generated by the generator is

expected to be as real as possible, that is, the loss function of the generator is expected

to be minimized. max
D

represents the hope that the discriminator can maximize the

distinction between generated image and the real image.

Based on GAN, CGAN introduces the conditional variable c to the generator and

discriminator to determine the specific category of the synthesis image. The specific

equation is as follows:

min
G

max
D

V (D,G) =
∑

x∼pdata
[logD(x, c)]

+
∑

z∼pz
[log(1−D(G(z, c)))],

(2.2)

2.3.2 Image-Text Matching

The main task of image-text matching is to map the image features and text features

to a common semantic space to measure the similarity of image and text. To better

calculate semantic consistency between text and image, we employ Deep Attentional

Multimodal Similarity Model (DAMSM) [6], which is a pretty way to judge semantic

consistency between text and image. DAMSM is a word-level fine-grained image-text

matching method. It employs the Bidirectional Long Shore-Term Memory (BiLSTM)

[30] to extract sentence features and word features of text description and utilizes

the Inception-v3 model [31] to obtain global features and sub-region features of the

image. Then, the combination of the two sets of features (text features and global
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image features, word features and image sub-region features) are mapped to a common

semantic space to calculate the semantic consistency.

The DAMSM’s training loss includes four aspects, and the related equations are as

follows:

L1 = − logP (s | IF ), (2.3)

L2 = − logP (IF | s), (2.4)

L3 = −
Nw∑
i=1

Nr∑
j=1

logP (wi | fj), (2.5)

L4 = −
Nr∑
j=1

Nw∑
i=1

logP (fj | wi), (2.6)

where s and wi denote sentence features and ith word features, respectively. IF and fj

represent image features and jth image sub-region features, respectively. Nw and Nr

denote the number of word and sub-region, respectively. The first equation represents

the matching degree with the sentence features under the condition of the global image

features, while the second equation is the opposite. The third equation shows the

matching degree with word features under the condition of image sub-region features,

while the fourth equation is the opposite. The related four losses are expected to be

minimized due to the use of negative log posterior probability.

Finally, the loss of DAMSM is as follows:

LDAMSM = L1 + L2 + L3 + L4 (2.7)

2.3.3 Introduction to Experimental Datasets

For our proposed T2I methods, we verify the performance on the CUB [32], Oxford-

102 [33], and MS COCO [34] datasets. Table 2.3.3 shows the basic information for

these datasets. The CUB dataset includes 11,788 images with 200 classes, where 8,855

images with 150 classes are utilized for training, and the rest of 2,933 images with
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Table 2.1: The basic information for the CUB, Oxford-102, and MS COCO datasets.

Dataset
CUB [32] Oxford-102 [33] MS COCO [34]

Train Test Train Test Train Test
Samples 8,855 2,933 7,034 1,155 82,783 40,504

50 classes are employed for testing. The Oxford-102 dataset contains 8,189 images

with 102 categories, 7,034 images with 82 categories of which are for training, and the

remaining 1,155 images with 20 categories for testing. The MS COCO dataset consists

of a training set of 82,783 images and a test set of 40,504 images. Each image in

the CUB and Oxford-102 contains ten text descriptions, while each image in the MS

COCO contains five text descriptions.

2.3.4 Introduction to Evaluation Methods

To evaluate our proposed T2I methods, we employ three quantitative evaluation meth-

ods, including inception score (IS) [13], Fréchet Inception Distance (FID) [35], and

R precision [6].

The Inception Score (IS), Fréchet Inception Distance (FID), and R-precision are

employed to evaluate our method quantitatively. The IS [13] uses a pre-trained Incep-

tion model [31] to evaluate the authenticity and diversity of the results. The higher

the IS score, the better quality and diversity of the synthesis results. The specific IS

evaluation equation is as follows:

IS = exp(
∑

xKL(p(y|x) || p(y))), (2.8)

where x represents the synthetic image, and y is the label predicted by the Inception

model, KL denotes Kullback-Leibler divergence. exp means exponential function.

FID [35] first utilizes the Inception model to extract corresponding features from

the synthetic image set and original image set. It then calculates the Fréchet distance

between the two sets of features through the Gaussian model. The lower score implies
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closer to the real image. The specific FID evaluation equation is as follows:

d2((msyn, Csyn), (mori, Cori)) = ∥ msyn − mori ∥22 +

Tr(Csyn + Cori − 2(Csyn Cori)
1
2 ),

(2.9)

The msyn and Csyn respectively represent the means and covariance metrics obtained

from synthetic image distribution psyn. mori and Cori respectively represent the means

and covariance metrics obtained from the original image distribution pori. Tr denotes

the matrix trace, which is the sum of the diagonal elements of the matrix.

R-precision is proposed by Xu et al. [6] that can evaluate whether the generated

image is consistent with the given text description. For a given image query, R-precision

can be measured by retrieving relevant text. Specifically, the DAMSM encoder is

used to encode the generated image and candidate text descriptions to extract the

corresponding feature vectors. Then the cosine similarity between global image features

and candidate text features is calculated. The candidate text descriptions contain R

ground truth and 100-R randomly selected mismatched text descriptions. If there are

r results that are relevant in the top R ranked retrieval descriptions, then the value

of R-precision is r
R
× 100%. In this paper, we compute the R-precision with R = 1,

and the generated images are divided into 10 folds to retrieve, and then the mean and

standard deviation of the result scores are regarded as the final R-precision results. A

higher score means more consistency with the semantic information of the text.

2.4 Method 1 — DrawGAN: Text to Image Synthe-

sis with Drawing Generative Adversarial Net-

works

In order to achieve better image synthesis quality, we analogy the text-to-image syn-

thesis task to the painting process. In the painting process, the first step is to draw

object’s basic contour, fill in the specific details based on the contour, and finally com-
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Figure 2.1: The display of three-stage synthesis results in the CUB, Oxford-102, and
MS COCO datasets. Through this piece-wise synthesis from simple to complex, our
model finally synthesizes high-quality images.

plete the whole drawing. Referring to such a rendering process, we first synthesize the

corresponding contour information based on the text description to determine the basic

shape of the object, then synthesize the corresponding foreground result with details

based on the contour information, and finally synthesize the result with complete infor-

mation based on the foreground image. Compared with other synthesis methods, our

proposed method defines each stage’s synthesis task, which can make the network struc-

ture of each stage pay more attention to its own task to obtain high-quality synthesis

results. By adding the information stage by stage, our method finally achieves excellent

results, which surpasses the performance of the existing state-of-the-art methods. Fig.

2.1 shows the progressive results obtained by our method.

2.4.1 Network Structure

The network structure of DrawGAN on text-to-image synthesis is shown in Fig. 2.2.

The input text description generates the corresponding sentence features and word

features through a pre-trained text encoder [6]. For the whole sentence features, firstly,
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the enhanced features are obtained by the conditioning augmentation technology [4].

And then the enhanced features combined with the noise vector of uniform distribution

or Gaussian distribution to form the final input. The features of contour information

(Image feature 0) can obtain through the fully-connected layer and continuous up-

sampling [36]. Through a convolution layer, the 2D contour image (Image 0) of the

first step is obtained.

For conditional augmentation technology [4], it can randomly sample latent vari-

ables from an independent Gaussian distribution (N(µ(s),
∑

(s)), where µ(s) and
∑

(s)

are the mean and diagonal covariance matrix of the sentence features (s). Therefore,

it can expand the number of training. On the other hand, to avoid the over-fitting

problem, it adds the following regularization term to the objective of the generator

during training.

DKL(N(µ(s),
∑

(s)) || N(0, 1)), (2.10)

where s is the sentence features, KL is the Kullback-Leibler divergence.

For the word features, with the support of the consistency calculation method, it

will select the words associated with the previous stage’s image features acquired.

For the specific consistency calculation method used in our model, we make the

following definitions: word features W , image local features F .

W = {w1, w2, ..., wi, ..., wN} (2.11)

F = {f1, f2, ... fj, ..., fNr} (2.12)

where wi and fj represent ith word feature and jth image sub-region feature, respec-

tively. N is the number of the words, and Nr is the number of image sub-region.

Following AttnGAN [6], we use a pre-trained image encoder [31] to extract image local

features F ∈ R768×289. Each column of F is the feature vector of an image sub-region.

Therefore, for one image, there are a total of 289 image sub-regions.
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Figure 2.2: The basic architecture of our DrawGAN. From simple to complex, the
model gradually synthesizes the contour image, foreground image, and final result
image.

After acquiring word and image local features, it needs to establish the relationship

between word and image local features, which means to retrieve the corresponding

image feature content for each word feature. The weight calculation equation for the

similarity probability between each word feature and image feature is as follows:

ci,j =
exp(DT (wi) · fj)

N∑
n=1

exp(DT (wn) · fj)
(2.13)

where ci,j represents the similarity probability between the ith encoded word feature and

the jth image sub-region feature. DT denotes the dimension transformation operation,

which can transfer the dimension of wi to map the image sub-region feature’s dimension

so that they can perform matrix multiplication operation (denoted as ‘·’). exp means

exponential function.
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According to the calculated similarity probability, the output of consistency calcu-

lation is expressed as:

outj =
N∑
i=1

ci,j ∗ fj (2.14)

After completing the consistency calculation, the output consistency calculation

features are combined with the current image features to generate the next stage image

features through the residual block [37] and up-sampling. Finally, the corresponding

synthetic results can obtain through a 3×3 convolution layer. The foreground image

(Image 1) of the second step and the final image (Image 2) of the last step are all

obtained in this way.

Our image synthesis process is divided into three stages, and each stage generates

the contour image, foreground image, and final image result, respectively. For the image

results generated by each stage, we use a corresponding discriminator to discriminate

them. Following AttnGAN [6], the structure of the discriminator is designed to extract

image features through multiple consecutive downsampling operations. On the one

hand, the extracted image features are used to distinguish the authenticity of the

image. On the other hand, image features will be combined with text features to judge

the semantic consistency between them.

2.4.2 Loss Function

The loss function of the generator consists of two parts: adversarial loss and consistency

judgment loss between image and text. The equation of adversarial loss is as follows:

LGi
= −1

2
[
∑

xi∼PGi
logDi(xi) +

∑
xi∼PGi

logDi(xi, s)] (2.15)

xi ∼ PGi
denotes that xi belongs to the generated image, where the value of i is 0, 1,

2, corresponding to three generation stages. Therefore, x0, x1, and x2 represent the

generated contour image, foreground image, and final image result, respectively. Di

18



represents the discriminator corresponding to the ith stage. log represents log means

logarithmic function. In Eq. 2.15, the first term is unconditional loss, which is used

to discriminate whether the image is true or false; the second term is conditional loss,

which is used to judge whether the image matches the text. s represents the sentence

features.

For the loss of semantic consistency between image and text, we use Deep Atten-

tional Multimodal Similarity Model (DAMSM) [6] loss, which is the best way to judge

semantic consistency between image and text. The equation of DAMSM loss is shown

Eq. 2.7.

In summary, the final loss equation of the generator is:

LG =
∑
i

LGi
+ λLDAMSM (2.16)

The discriminator’s loss function only includes the adversarial loss, and the specific

equation is as follows:

LD =
∑
i

−1

2
[
∑

ri∼Pdata
logDi(ri) +

∑
xi∼PGi

log(1−Di(xi))

+
∑

ri∼Pdata
logDi(ri, s) +

∑
xi∼PGi

log(1−Di(xi, s))]

(2.17)

ri ∼ Pdata denotes that ri belongs to the real image. Therefore, r0, r1, and r2 represent

the real contour image, foreground image, and image with background in the dataset,

respectively. In Eq. 2.17, the first two items are unconditional losses for judging the

authenticity of the image, and the latter two items are conditional losses for judging

whether the image and text match.

The loss functions of the generator and the discriminator show that, unlike the exist-

ing T2I methods [6][10], in our proposed method, the generator sequentially synthesizes

the contour image, the foreground image, and the final result with the background in

three stages, while the generator of [6][10] synthesize the image result of the background
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in all three stages. In contrast, we have the ability to finally synthesize high-quality

image results by refining the generation process in the generator, allowing it to be

generated sequentially from simple information to complex information. Furthermore,

corresponding to the three stages of the generator, our discriminator can receive three

different image types (contour, foreground, and image with background) respectively

and uses them for loss calculation at different stages. In this way, our proposed method

can generate and discriminate specific types of images in different stages.

2.4.3 Implementation Details

During the specific training, Adam optimizer [38] is used with batch size 10 on the

CUB, Oxford-102 flower, and MS COCO datasets, and the initial learning rate is

0.0002. The whole training process is iterated 600 epochs on the CUB and Oxford-102

flower datasets, and 120 epochs on the MS COCO dataset. The value of λ in Eq.

2.16 is 5 in the CUB and Oxford-102, and 50 in the MS COCO. For the text encoder

and image encoder, following [6], we use a pre-trained text encoder [30] model and a

pre-trained image encoder [31] model to extract corresponding text features and image

features.

The related model structure details are as follows. In the up-sampling block, the

scale factor is 2. After the up-sampling, it is processed by a convolution layer and a

batch normalization (BN) [39]. In the residual block, it contains two convolution layers

and BN operations. In the down-sampling of image features, a spectral normalization

(SpectralNorm) [40] is utilized first, and then the leaky-ReLU [41] activation function

is employed. For the image results of the previous stage, four SpectralNorm and leaky-

ReLU operations are used continuously in the down-sampling coding.
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Figure 2.3: Some foreground images processed in the CUB, Oxford-102, and MS COCO
datasets are displayed above.

2.4.4 Experiments

There is no contour and foreground image on the CUB, Oxford-102, and MS COCO

datasets, so the corresponding contour and foreground results are obtained by pre-

processing at first. For the pre-processing of the CUB dataset, because it provides

the binary image of the original image on the official website, we directly convert the

binary image and reserve the edge to get the corresponding contour results. Besides,

the foreground image can be obtained by turning the corresponding background into

white in the original image by comparing the binary image with the original image.

The Oxford-102 dataset provides the segmentation image with a pure blue background.

Hence it can obtain the foreground image of Oxford-102 by turning the background

of the segmentation image to white directly. For the pre-processing of the MS COCO

dataset, the dataset provides the coordinates of the mask segmentation result, so it

can directly read these coordinates to extract the foreground image. After obtaining

the foreground content of the Oxford-102 and MS COCO datasets, we use a Canny

operator to process the foreground image to obtain the contour image. Some pre-

processing results are shown in Figure 2.3.
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Figure 2.4: The comparison results of AttnGAN [6], DMGAN [10], and our method on
the CUB dataset.
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Figure 2.5: The comparison results of AttnGAN [6], DMGAN [10], and our method on
the Oxford-102 flower dataset.
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Figure 2.6: The comparison results of AttnGAN [6], DMGAN [10], and our DrawGAN
on the MS COCO dataset.

Qualitative results

The results obtained by our method are compared with those of AttnGAN and DM-

GAN. The specific comparison results are shown in Fig. 2.4, 2.5, and 2.6. In the bird

comparison results, our method shows better performance in detail synthesis (such as

eyes, pecks, and tails), overall smoothness, and authenticity. Our results are closest

to the real image effect. In the flower comparison results, our results have brightness

and detail processing so as to have better authenticity. In the comparison results of

MS COCO, our method has better performance in overall quality. It has better sub-

jective authenticity than the results of AttnGAN and DMGAN. Besides, the results of

DrawGAN synthesis are more consistent with the content of the text description.
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Table 2.2: The IS and FID comparison results of our DrawGAN and the existing
methods on the CUB dataset.

Model IS ↑ FID ↓
GAN-CLS-INT [3] 2.88±0.04 68.79
GAWWN [42] 3.62±0.07 53.51
StackGAN [4] 3.70±0.04 35.11

StackGAN++ [5] 4.04±0.05 18.02
HDGAN [7] 4.15±0.05 22.70
AttnGAN [6] 4.36±0.03 23.98
MirrorGAN [8] 4.56±0.05 29.81
ControlGAN [26] 4.58±0.09 -
LeicaGAN [9] 4.62±0.06 -
DMGAN [10] 4.75±0.07 16.09
DrawGAN 4.76±0.04 9.87

Table 2.3: The IS and FID comparison results of our DrawGAN and the existing
methods on the Oxford-102 flower dataset.

Model IS ↑ FID ↓
GAN-CLS-INT [3] 2.66±0.03 79.55
StackGAN [4] 3.20±0.01 55.28

StackGAN++ [5] 3.26±0.01 48.68
HDGAN [7] 3.45±0.07 -
AttnGAN [6] 3.75±0.02 37.94
LeicaGAN [9] 3.92±0.03 -
DMGAN [10] 4.03±0.05 21.36
DrawGAN 4.07±0.04 20.24

Table 2.4: The IS and FID comparison results of our DrawGAN and the existing
methods on the MS COCO dataset.

Model IS ↑ FID ↓
GAN-CLS-INT [3] 7.88±0.07 60.62
StackGAN [4] 8.45±0.03 74.05

StackGAN++ [5] 8.30±0.10 81.59
HDGAN [7] 11.86±0.18 -
ISL [11] 12.40±0.08 -

AttnGAN [6] 25.89±0.47 35.49
MirrorGAN [8] 26.47±0.41 -
DMGAN [10] 30.49±0.57 32.64
DrawGAN 31.11±0.67 31.51
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Table 2.5: The R-precision comparison results of AttnGAN [6], DMGAN [10], and our
DrawGAN.

Dataset AttnGAN DMGAN Our
CUB 67.82±4.43 72.31±0.91 77.99±0.72

Oxford-102 67.64±0.90 77.25±1.13 77.70±1.00
MS COCO 85.47±3.69 88.56±0.28 89.20±0.40

Quantitative results

The quantitative comparison results between our method and other methods on the

CUB, Oxford-102 flower, and MS COCO are shown in Tables 2.2, 2.3, 2.4 and 2.5.

The results reflect our method’s excellent performance in terms of synthetic quality

and match degree with text, which surpasses the existing state-of-the-art methods.

This shows the effectiveness of our proposed method. By first synthesizing the con-

tour image, then the foreground image, and then the final result image, our method

refines the synthesis tasks at each stage and finally achieves better image synthesis

performance.

For the results on the CUB and Oxford-102 datasets (in Tables 2.2 and 2.3), we

can find that our method has little improvement in IS (about 0.21% and 0.99%) and

obvious improvement in FID (about 38.6% and 5.2%) compared with the current best

performance method. IS can measure the overall quality and diversity of synthetic

results, and FID can measure the quality of synthetic images. Therefore, the results

on the CUB and Oxford-102 datasets show that on these two datasets, our proposed

method has a better promotion effect on the quality of image synthesis and has a

certain promotion effect in improving the diversity of synthetic images. For the results

on the MS COCO dataset (in Table 2.4), compared with the current best method,

our results improve IS and FID by 2.03% and 3.46%, respectively, which shows the

effectiveness of our method on the MS COCO dataset.
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Table 2.6: The ablation experiment results on the CUB dataset.
First Stage Second Stage Third Stage

IS 1.08±.00 3.80±.05 4.76±.04
FID 247.21 55.48 9.87

Table 2.7: The ablation experiment results on the Oxford-102 dataset.
First Stage Second Stage Third Stage

IS 1.40±.01 2.82±.03 4.07±.04
FID 293.55 110.21 20.24

Ablation Study

The specific ablation results are shown in Tables 2.6, 2.7, and 2.8. The first stage, sec-

ond stage, and third stage in the tables represent the corresponding generated contour

image (Image 0), foreground image (Image 1), and final image (Image 2). Tables 2.6

and 2.7 show the ablation experimental results under the CUB and Oxford-102 flower

datasets. It reflects that the first stage’s contour results are very poor according to IS

and FID, while the second stage’s foreground results have been significantly improved.

On this basis of the second stage, the third stage finally synthesizes higher-quality re-

sults. Table 2.8 shows the ablation experimental results under the MS COCO dataset.

It shows that the results of both IS and FID in the first and second stages are very

poor, and better results are obtained only in the third stage. The main reason is that

the MS COCO dataset’s images are complex images, and its complexity is reflected in

the foreground and background content. Due to the lack of background information,

the foreground image in the second stage can not achieve the essential improvement. In

contrast, the core of the bird and flower images is mainly reflected in the foreground ob-

jects, so the second stage results in the CUB and Oxford-102 datasets can be improved

Table 2.8: The ablation experiment results on the MS COCO dataset.
First Stage Second Stage Third Stage

IS 2.03±.03 4.00±.05 31.11±.67
FID 308.02 171.28 31.51
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Figure 2.7: The above figure shows the comparison between our synthetic image and
the real image. It can be seen that the synthesized results of our proposed method are
basically equivalent to the real image effect.

essentially.

2.5 Method 2 — Text-to-Image Synthesis: Starting

Composite from the Foreground Content

Our proposed method 1 (denoted as DrawGAN) improves the quality of image synthesis

by refining the three-stage synthesis task. In the first-stage synthesis task, DrawGAN

is to synthesize the contour image. However, the input text information does not

contain contour information, which may hinder the improvement of image quality for

subsequent synthesis. Therefore, to further improve the quality of image synthesis, we

propose a multi-stage synthesis method starting the composite from the foreground

content. Different from DrawGAN, this method first synthesizes the foreground result

based on the text information, and then synthesizes the final image result. The con-

tent of the foreground result is highly correlated with the content of the input text

information, which can better promote the quality of the final synthetic image result.

Like DrawGAN, this method also includes three synthesis stages. Specifically, it syn-
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Figure 2.8: The first stage generation structure of our method is shown above. It
mainly carries out the continuous up-sampling operation on text features to realize
image synthesis. Image 0 indicates the synthesis result of the first stage.

thesizes foreground results in the first stage. For the synthesis of the second stage,

there are two cases: continue to synthesize the foreground result or initially synthesize

the image result with background information. In the third stage, the final result with

background information is synthesized based on the result synthesized in the second

stage. It is worth mentioning that in the following content, the situation of continuing

to synthesize the foreground result in the second stage is denoted as fore 1, while the

preliminary synthesis of the image result with background information is denoted as

fore 1&2.

In our proposed method, In the foreground synthesis stage, the whole architecture

can pay more attention to the synthesis of foreground objects so as to generate the

refined foreground result. The refined foreground result can play a good role in pro-

moting the subsequent image synthesis, and the higher-quality image result can finally

be achieved. Figure 2.7 shows the comparison between the synthesized results of our

method and the real images. The comparison shows that our results have basically

equivalent to the real image synthesis effect.

2.5.1 Network Structure

In our specific method, the synthesis process is divided into three stages. The first

stage’s generation structure is shown in Figure 2.8. For the input text description, a

text encoder [6] is used to encode the sentence feature, and then the sentence features

are enhanced by conditional augmentation technology [4]. The corresponding content
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Figure 2.9: The figure above shows our proposed method’s second and third stages
generation structure. Image 1 and Image 2 indicate the synthesis results of the sec-
ond and third stages, respectively. The results of the second stage include two cases:
continue to synthesize foreground results or initially synthesize the image result with
background information.

of the conditional augmentation is shown near Eq. 2.10.

After the conditional augmentation, the sentence features are first transformed

by a fully connected (FC) layer and then obtain the corresponding image features

by continuously up-sampling. Finally, the image features are transformed into the

corresponding image by a 3 × 3 convolution layer.

Figure 2.9 shows the synthesis structure of the second and third stages. Unlike the

first stage that encodes the input text description as the sentence features, the text

encoder [6] in the second and third stages encodes the text description as corresponding

word features. In the second stage, the dynamic selection method [10] is employed to

select the word features that match the image features synthesized in the first stage

from the encoding word features and then combine the selected word features with

the image features of the first stage to generate the image features of the second stage
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through up-sampling and residual [37] operations. Figure 2.9 shows that in the second

stage, the foreground result or image result with background is synthesized. Similarly,

the third stage also uses the dynamic selection method to select the word features that

match the second stage image features and then combine them to synthesize the third

stage image features through up-sampling and residual operations. The image features

in the second and third stages also through a 3 × 3 convolution layer to generate the

corresponding image results.

For the dynamic selection method in this work, the corresponding specific details

are presented. In the beginning, the dynamic selection method first selects the related

words to refine the previous stage’s image. It utilizes the sigmoid function to process

word features and image features to calculate the importance of each word and then

obtains the prior knowledge by combining the image features and the word features.

The relevant equations are as follows:

hi = σ(DT (wi) +DT (R)), (2.18)

ki = DT (wi) ∗ hi +DT (R) ∗ (1− hi), (2.19)

where wi is the ith word feature, R = 1
Nr

∑Nr

i=1 fi, fi is the ith image region feature, R

represents the average of image sub-region features. Nr denotes the number of image

regions. σ is a sigmoid function. hi is a value that indicates the importance of the ith

word. DT represents dimension transformation operation, which is to enable wi and

R to perform normal matrix operations. ki is considered prior knowledge obtained by

fusing image features and word features according to the calculated word importance.

The acquired prior knowledge initially constructs the relationship between word and

image features. Then, in order to further strengthen this connection, the similarity of

each prior knowledge and image region feature is calculated. The specific calculation
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equation is as follows:

ci,j =
exp((ki)

T · fj)
N∑

n=1

exp((kn)
T · fj)

, (2.20)

where ci,j represents the similarity probability between the ith prior knowledge feature

(ki) and the jth image sub-region feature (fj). exp means exponential function. T

represents the matrix transpose operation. N denotes the number of words in the

sentence.

After the similarity calculation, the prior knowledge will be updated as follows:

k
′

j =
N∑
i=1

ci,j ∗ kj, (2.21)

After updating the prior knowledge, the current image features and the updated

prior knowledge are combined to form the new features. After that, the next stage’s

image features can be obtained by up-sampling and residual block processing. The

specific combination equations of image features and prior knowledge are as follows:

qi = σ(W (k
′

i, fi) + b), (2.22)

f
′

i = k
′

i ∗ qi + fi ∗ (1− qi), (2.23)

where k
′
i and fi denote ith updated prior knowledge feature and ith image sub-region

feature, respectively. qi is a value that uses to fuse the features of updated prior

knowledge and image sub-region. f
′
i is ith updated image sub-region feature after

fusion. W and b represent the weight and bias in the training process, respectively.
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2.5.2 Loss Function

The whole model’s loss function includes the loss of the GAN and the encoding loss

(DAMSM loss) of the text encoder [6]. For the loss function of the generator, it includes

the adversarial loss and the DAMSM loss. The details are as follows:

LG =
∑
i

LGi
+ λLDAMSM , (2.24)

LGi
= −1

2

∑
xi∼PGi

logDi(xi)−
1

2

∑
xi∼PGi

logDi(xi, s), (2.25)

The specific content of DAMSM loss is shown in Section 2.3.2. i indicates the ith

generation stage. xi ∼ PGi
denotes that xi belongs to the generated image. Specifi-

cally, x0 and x2 represent the generated foreground image and final image result with

background information, respectively. For x1, it can be the foreground image that

continues to be generated or the initially generated image with background informa-

tion. Di represents the discriminator corresponding to the ith stage. log represents

log means logarithmic function. In Eq. 2.25, the first item is to distinguish whether

the synthesized image is realistic, and the second item is to distinguish whether the

synthesized image matches the input text description.

For the discriminator’s loss function, it only includes the adversarial loss. The

specific equation is as follows:

LD =
∑
i

−1

2
[
∑

ri∼Pdata
logDi(ri) +

∑
xi∼PGi

log(1−Di(xi))]

−1

2
[
∑

ri∼Pdata
logDi(ri, s) +

∑
xi∼PGi

log(1−Di(xi, s))],

(2.26)

ri ∼ Pdata denotes that ri belongs to the real image. Therefore, r0 and r2 represent the

real foreground image and image with the background in the dataset, respectively. For
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r1, if x1 is the generated foreground result, it represents the real foreground image. if

x1 is the generated image result with the background, it represents the real image with

the background. In Eq. 2.26, the first term is to judge whether the image is real, and

the second term is to judge whether the image and the text match.

2.5.3 Implementation Details

The up-sampling operation after the conditional augmentation in the generator consists

of four up-sampling operations. The up-sampling operation after dynamic selection in-

cludes two residual blocks and one up-sampling block. In the up-sampling and residual

block, except for the last convolution, each convolution operation is followed by a Batch

Normalization (BN) [39]. In the down-sampling operation, spectral normalization [40]

and leaky-ReLU [41] are used after each convolution. The value of leaky is 0.2.

The model uses Adam optimizer [38] to train 600 epochs on the CUB and Oxford-

102 datasets, and 120 epochs on the MS COCO dataset. The batch size in CUB,

Oxford-102, and MS COCO is 10, and the learning rate is 0.0002. The value of λ in

Eq. 2.24 is 5 for the CUB and Oxford-102 datasets, 50 for the MS COCO dataset.

Besides, for the text encoder and image encoder, we still use a pre-trained text encoder

[30] model and a pre-trained image encoder [31] model to extract corresponding text

features and image features.

2.5.4 Experiments

For the method of obtaining foreground results, we have explained in Section 2.4.4,

and some processed foreground results are also shown in Figure 2.3.

Qualitative Results

Stage Results. The staged results are shown in Figures 2.10 and 2.11. Figure 2.10

corresponds to the situation that the foreground content is synthesized only in the first
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Figure 2.10: The results of the three stages corresponding to fore 1 are shown above.
fore 1 means that the foreground result is synthesized only in the first stage.

stage, while Figure 2.11 is the situation that the foreground image is synthesized in

the first two stages. For the bird and flower image results, whether the foreground

image is synthesized only in the first stage or in the first two stages, the foreground

image’s synthesis effect is relatively real. It is obvious from the intuitive point of view

that the generated result is a bird or a flower. But for complex images, the synthesized

foreground results can not reflect the content of the text description subjectively. In

particular, in the first or second stage, the foreground result basically can not reflect

the corresponding text content. This phenomenon implies that in the complex image

synthesis, the foreground result synthesized in the second stage can not promote the

final image synthesis better because it still does not have good authenticity.

At the same time, the process of fine-tuning based on the dynamic selection method

is shown in Figures 2.12- 2.17. The dynamic selection method makes local fine-tuning

on the results of the second and third stages, which reflects that it can select the

words related to the image region features and fine-tune them to achieve higher-quality

results. In Figures 2.12- 2.17, the first row is the input text and the corresponding

generated result. The second row is the fine-tuning result of the second stage. The

third row is the fine-tuning result of the third stage. Comparing the fine-tuning results
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this is a black bird 

with a white spotted 

belly and a yellow 

crown

a small bird with a 

yellow speckled belly 

and a grey wings

this flower is pink, 

white, and yellow in 

color, and has petals 

that are striped

this flower has petals 

that are pink and has 

black spots

a large red and 

white boat 

floating on top 

of a lake

this table is 

filled with a 

variety of 

different dishes

First stage

64*64

Second stage

128*128

Third stage

256*256

Figure 2.11: The results of the three stages corresponding to fore 1&2 are shown
above. fore 1&2 indicates that both the first two stages synthesize the foreground
image.

in the second row and the third row, we can find that in different synthesis stages,

the dynamic selection method can select different word information and image regions

for fine-tuning. This dynamicity enables the method to adjust the selection of word

information and image regions to achieve better fine-tuning performance. In addition,

Figures 2.12 and 2.13, 2.14 and 2.15, 2.16 and 2.17 respectively show the comparison

fine-tune results of birds, flowers, and complex images corresponding to fore 1 and

fore 1&2 under the same text description. In contrast, although the synthesis process

of these two cases is different, they can both synthesize satisfactory image results. The

quantitative comparison between them is shown in Table 2.15. The results in Table

2.15 show that fore 1 is more suitable for generating bird and flower images, while

fore 1&2 is more suitable for generating complex images.

Comparison Results.

In the quantitative results, we first present the comparison results between our

method’s synthetic images and the generated images of current excellent performance

methods. The specific comparison results on the three datasets are shown in Figures

2.18- 2.20. For the bird results, the overall authenticity and clarity of StackGAN

results are poor, while the clarity of AttnGAN, DMGAN, and DrawGAN is improved
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the bird is small in 

size with a small 

round head and is red 

in color

Figure 2.12: The fine-tuning results of birds in situation fore 1 are shown above.

the bird is small in

size with a small

round head and is red

in color

Figure 2.13: The fine-tuning results of birds in situation fore 1&2 are shown above.

the flower has many

closed yellow colored

petals that are rounded

in shape

Figure 2.14: The fine-tuning results of flowers in case fore 1 are shown above.
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the flower has many 

closed yellow colored 

petals that are rounded 

in shape

Figure 2.15: The fine-tuning results of flowers in case fore 1&2 are shown above.

an image of a kitchen 

loft style setting

Figure 2.16: The MS COCO’S fine-tuning results in case fore 1 are shown above.

an image of a kitchen 

loft style setting

Figure 2.17: The MS COCO’S fine-tuning results in case fore 1&2 are shown above.
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this bird is 

brown with 

yellow and has 

a long, pointy 

beak

this is a bird 

with black and 

white feathers 

and a small 

straight beak

a little, chubby 

bird with a black 

and white 

streaked chest 

and a rustic 

brown back

a big bird with 

a long curved 

neck, with a 

black and 

white 

coloration

the bird is grey 

with a white 

body and small 

red beak

this bird has 

wings that are 

brown and 

spotted and 

has a red 

crown

AttnGAN

Our

StackGAN

DMGAN

DrawGAN

Figure 2.18: The comparison results between StackGAN [4], AttnGAN [6], DMGAN
[10], DrawGAN, and our method on the CUB dataset are shown above. Our results
are subjectively closest to the real image effect.

a flower that 

has purple and 

white petals

this flower is pink 

and yellow in 

color, with petals 

that are pointed at 

the tips

this flower has 

a lot of tall 

pointy red 

petals and a 

middle full of 

yellow stamen

the petals of 

the flowers are 

yellow in color 

with green 

leaves

this flower has 

petals that are 

pink with 

yellow patches

prominent 

purple 

stigma,petals 

are white in 

color

StackGAN

Our

AttnGAN

DMGAN

DrawGAN

Figure 2.19: The comparison results between StackGAN [4], AttnGAN [6], DMGAN
[10], DrawGAN and our method on the Oxford-102 dataset are shown above. Our
flower images are the best in terms of overall shape, clarity, and authenticity.
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a pizza with 

broccoli on it 

on the table

a table topped 

with a container 

containing a 

sandwich on top 

of a table 

a brick clock 

tower 

ascending 

towards the 

heavens

a school bus 

waiting to pick 

up children

a large kitchen 

with light 

wooden 

cabinets and 

plenty of light

group of 

people 

watching kites 

being flown.

AttnGAN

Our

StackGAN

DMGAN

DrawGAN

Figure 2.20: The comparison results between StackGAN [4], AttnGAN [6], DMGAN
[10], DrawGAN and our method on the MS COCO dataset are shown above. Overall,
our results are more authentic than other methods.

effectively, but the overall authenticity is still weak. In contrast, the results obtained

by our method have excellent performance in authenticity and clarity. Besides, our

method performs better in detail processing, such as the bird’s eyes, peck, feathers,

and overall smoothness.

For the flower comparison results, the flower images synthesized by all the methods

have pretty authenticity. But in terms of clarity, StackGAN is still unsatisfactory.

The overall clarity of AttnGAN, DMGAN, and DrawGAN is better than StackGAN.

However, they are not as good as our method in detail processing, such as petals and

stamens. Our method’s results are clearly visible in detail, which makes the results

have the best authenticity.

For the comparison results of complex images, the results of our

method also have better clarity and subjective authenticity, and the results are

39



more authentic than those of other methods.

From the comparison results of these three datasets, our method’s results have

stunning subjective authenticity on the whole. Simultaneously, our method shows

excellent performance in detail synthesis so that the generated results are basically

equivalent to the real image effect.

Stage Comparison Results. Figures 2.21- 2.23 show the three-stage comparison

results between our proposed method and AttnGAN [6], DMGAN [10], DrawGAN. For

better subjective comparison, we expand the images synthesized in the first stage and

the second stage into 256∗256 size. In these results, we can find that the three-stage

results of AttnGAN and DMGAN both contain foreground information and background

information. The three-stage result of DrawGAN is to first synthesize the simple

contour information, then synthesize the foreground content, and finally synthesize the

image result with background information. In contrast, our proposed method includes

two ways, one is to synthesize foreground information in the first stage, the second and

third stages synthesize image results with background information, and the other is

to synthesize foreground information in the first and second stages, the image results

with background information are synthesized in the third stage.

Compared with AttnGAN and DMGAN, which synthesize foreground and back-

ground results directly, DrawGAN makes the tasks of each synthesis stage more clear

through the simple to complex synthesis method, thereby reducing the difficulty of the

entire synthesis task and finally realizing better realistic image synthesis. However,

DrawGAN’s synthesis method from contour to foreground and then to the final result

lacks the fine-tuning process of foreground or background content, so there is still room

for improvement in the quality of synthetic images. Our proposed method synthesizes

the foreground content in the first stage, synthesizes the image results with background

information or continues to synthesize the foreground content in the second stage, and

synthesizes the image results with background information in the third stage. The
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this small black bird has black eyes, a white belly and red 

wingbars
AttnGAN DMGAN DrawGAN fore_1 fore_1&2

First stage

Second stage

Third stage

Figure 2.21: The bird results of the three stages corresponding to AttnGAN [6], DM-
GAN [10], DrawGAN, and our proposed fore 1 and fore 1&2 are shown above. fore 1
means that the foreground result is synthesized only in the first stage, while fore 1&2
indicates that both the first two stages synthesize the foreground image.

way of continuing to synthesize foreground content in the second stage can fine-tune

the foreground synthesized in the first stage, thereby improving the synthesis quality

of the foreground. When the image results with background information are synthe-

sized in the second and third stages, the third stage can fine-tune the background

information synthesized in the second stage to improve the overall synthesis quality.

Therefore, compared with DrawGAN, our proposed method can better fine-tune the

background or foreground information during the stage synthesis process to synthesize

higher-quality image results. Besides, our method also splits the task of the entire

synthesis process in each stage, thus reducing the difficulty of the synthesis task to a

certain extent.

Quantitative results

Comparison Results. The comparison results of the IS and FID on the CUB, Oxford-

102, and MS COCO datasets are shown in Tables 2.9- 2.11. The results on the CUB
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the petals on this flower are purple with yellow stamen
AttnGAN DMGAN DrawGAN fore_1 fore_1&2

First stage

Second stage

Third stage

Figure 2.22: The flower results of the three stages corresponding to AttnGAN [6],
DMGAN [10], DrawGAN, and our proposed fore 1 and fore 1&2 are shown above.

and Oxford-102 datasets show that our method outperforms the existing state-of-the-

art methods, reflecting that our method has an excellent effect on the diversity and

authenticity of the generated bird and flower images. In the MS COCO dataset, our

method also shows stunning performance. It achieves excellent performance in terms of

IS and FID. Especially in FID, our method performs best, demonstrating our method’s

effectiveness and superiority in the MS COCO dataset.

For the comparison results of R-precision, we select AttnGAN [6], DMGAN [10],

and DrawGAN with the pretty performance for comparison. The specific comparison

results are shown in Table 2.12. The comparison results show that the results of bird,

flower, and complex images synthesized by our method have excellent consistency with

the input text description information, which further reflects our method’s effectiveness

and superiority in synthetic images.

Ablation Study. Since our method is divided into three stages, the first stage

is to synthesize the foreground result, the second stage is to generate the foreground

result or the image result with background, and the third stage is to synthesize the

final image result. Because there are two situations in the second stage, we conduct
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A living room with furniture in it, including a black couch 

and sofa table, shelf and TV
AttnGAN DMGAN DrawGAN fore_1 fore_1&2

First stage

Second stage

Third stage

Figure 2.23: The complex results of the three stages corresponding to AttnGAN [6],
DMGAN [10], DrawGAN, and our proposed fore 1 and fore 1&2 are shown above.

Table 2.9: The IS and FID comparison results of our method and the existing methods
on the CUB dataset.

Model IS ↑ FID ↓
GAN-CLS-INT [3] 2.88±0.04 68.79
GAWWN [42] 3.62±0.07 53.51
StackGAN [4] 3.70±0.04 35.11

StackGAN++ [5] 4.04±0.05 18.02
C4Synth [43] 4.07±0.13 -
HDGAN [7] 4.15±0.05 -

LDCGAN [44] 4.18±0.06 -
AttnGAN [6] 4.36±0.03 23.98
PPAN [27] 4.38±0.05 -

MirrorGAN [8] 4.56±0.05 29.81
ControlGAN [26] 4.58±0.09 -
LeicaGAN [9] 4.62±0.06 -
SEGAN [28] 4.68±0.04 18.16

SAM-GAN [45] 4.61±0.03 20.49
ICSD-GAN [46] 4.66±0.04 9.35
DMGAN [10] 4.75±0.07 16.09

TVBi-GAN [47] - 11.83
MA-GAN [48] 4.76±0.05 21.66
DrawGAN 4.76±0.04 9.87

Our 4.79±0.05 9.29
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Table 2.10: The IS and FID comparison results of our method and the existing methods
on the Oxford-102 dataset.

Model IS ↑ FID ↓
GAN-CLS-INT [3] 2.66±0.03 79.55
StackGAN [4] 3.20±0.01 55.28

StackGAN++ [5] 3.26±0.01 48.68
HDGAN [7] 3.45±0.07 -

LDCGAN [44] 3.45±0.08 -
C4Synth [43] 3.52±0.15 -
PPAN [27] 3.52±0.02 -

AttnGAN [6] 3.75±0.02 37.94
LeicaGAN [9] 3.92±0.02 -
DMGAN [10] 4.03±0.05 21.36

ICSD-GAN [46] 3.87±0.05 32.64
MA-GAN [48] 4.09±0.08 41.85
DrawGAN 4.07±0.04 20.24

Our 4.19±0.05 18.96

ablation experiments. There are two aspects to the ablation experiment. One is the

quantitative results of the three stages corresponding to the two situations on the

CUB, Oxford-102, and MS COCO datasets. The other is the comparison results of

two situations on these three datasets.

The three-stage results of “fore 1” and “fore 1&2” are shown in Tables 2.13 and

2.14. For the case that only the foreground result is synthesized in the first stage, IS and

FID are significantly improved in the second stage and then achieve better results in the

third stage. For the R-precision, there is no big difference between the corresponding

three-stage results in CUB and Oxford-102, reflecting that the results synthesized in

each stage of the two datasets are consistent with the semantic information of the text.

However, the R-precision of the first stage is relatively poor in MS COCO results. The

MS COCO dataset’s image content is complex, with diverse foreground objects and

complex background information. Therefore, the R-precision of the foreground results

synthesized in the first stage is poor in MS COCO due to the lack of background

content.

For the case that the foreground result is synthesized in the first and second stage,
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Table 2.11: The IS and FID comparison results of our method and the existing methods
on the MS COCO dataset.

Model IS ↑ FID ↓
GAN-CLS-INT [3] 7.88±0.07 60.62
StackGAN [4] 8.45±0.03 74.05

StackGAN++ [5] 8.30±0.10 81.59
ChatPainter [49] 9.74 ±0.02 -

PPGN [29] 9.58±0.21 -
HDGAN [7] 11.86±0.18 -
ISL [11] 12.40±0.08 -

AttnGAN [6] 25.89±0.47 35.49
MirrorGAN [8] 26.47±0.41 -
ControlGAN [26] 24.06±0.60 -

SEGAN [28] 27.86±0.31 32.28
SAM-GAN [45] 27.31±0.23 33.41
DMGAN [10] 30.49±0.57 32.64

TVBi-GAN [47] - 31.97
DrawGAN 31.11±0.67 31.51

Our 30.70±0.45 29.55

Table 2.12: The R-precision comparison results of AttnGAN, DMGAN, DrawGAN,
and our method.

Model CUB Oxford-102 MS COCO
AttnGAN [6] 67.82±4.43 67.64±0.90 85.47±3.69
DMGAN [10] 72.31±0.91 77.25±1.13 88.56±0.28
DrawGAN 77.99±0.72 77.70±1.00 89.20±0.40

Our 77.86±0.3 79.32±0.67 90.36±0.52

Table 2.13: The ablation experiment analysis of the three-generation stages corre-
sponding to the fore 1. 1, 2, and 3 in the table indicate the first stage, the second
stage, and the third stage, respectively.

Dataset IS FID R-precision

CUB

1 2.99±0.03 130.5 76.84±0.69
2 4.34±0.05 48.74 76.86±0.67
3 4.62±0.0.7 14 76.88±0.70

Oxford-102

1 2.28±0.02 183.66 76.98±0.88
2 3.55±0.05 59.31 76.99±0.90
3 3.90±0.05 22.12 77.85±0.57

MS COCO

1 2.28±0.03 260.39 20.4±0.16
2 9.92±0.15 86.04 89.26±0.42
3 30.70±0.45 29.55 90.36±0.52
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Table 2.14: The ablation experiment analysis of the three-generation stages corre-
sponding to the fore 1&2.

Dataset IS FID R-precision

CUB

1 3.23±0.03 121.1 76.94±1.11
2 3.64±0.04 59.31 76.99±1.99
3 4.79±0.05 9.29 77.86±0.53

Oxford-102

1 2.32±0.02 184.16 77.61±0.89
2 2.75±0.03 111.49 77.64±0.89
3 4.19±0.05 18.22 79.32±0.67

MS COCO

1 2.87±0.04 234.94 20.0±0.24
2 3.84±0.04 181.85 20.2±0.24
3 29.94±0.62 31.62 89.63±0.52

the results in Table 2.14 reflect that excellent performance only can be achieved in

the third stage, while the results in the first and second stages are relatively poor.

The reason is that the results of the first two stages are the foreground image. How-

ever, compared with the results of the first and third stages in Tables 2.13 and 2.14,

“fore 1&2” shows better performance than “fore 1” in terms of IS and FID. It demon-

strates that continuing to synthesize the foreground image in the second stage can make

the foreground object more refined, which can further promote the final result’s syn-

thesis quality in the third stage. Besides, better training in the third stage can also

promote the training of the first two stages so that the results of the first stage of

“fore 1&2” are better than those of “fore 1”.

The comparison results between the two situations are shown in Table 2.15. For

the CUB and Oxford-102 results, the method of synthesizing foreground content in

the first two stages achieves better results in terms of IS, FID, and R-precision. This

demonstrates that using two stages to synthesize refined foreground objects can bet-

ter promote the final synthesis effect and obtain higher-quality image results. For the

results of MS COCO, “fore 1” performs better, which indicates that the results with

background information synthesized in the second stage can make the final generated

complex image results better authentic. The reason is that in the situation “fore 1”,
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the background information generated in the second stage can be adjusted in the third

stage so that it can improve the overall authenticity further. There is no such phe-

nomenon in CUB and Oxford-102 because the authenticity of the images in these two

datasets is more reflected in the foreground content, and the background information

has little effect on it.

Table 2.15: The comparison experiment results between fore 1 and fore 1&2 on the
CUB, Oxford-102, and MS COCO dataset.

fore 1 fore 1&2
Dataset IS FID R-precision IS FID R-precision

CUB 4.62±0.07 14.00 76.88±0.70 4.79±0.05 9.29 77.86±0.53
Oxford-102 3.90±0.05 25.49 77.85±0.57 4.19±0.05 18.22 79.32±0.67
MS COCO 30.70±0.45 29.55 90.36±0.52 29.94±0.62 31.62 89.63±0.52

2.6 Method 3 — Text to Image Synthesis with Eru-

dite Generative Adversarial Networks

The core of our proposed method 1 (denoted as DrawGAN) and method 2 (denoted as

INS fore) is to refine the generation process of the generator to synthesize higher-quality

image results. In generative adversarial networks (GAN), in addition to the generator,

the discriminator is also crucial, which needs to provide high-quality discriminative

feedback to promote the generator to achieve high-quality image synthesis. Based on

this, in this method, we are committed to improving the discriminative ability of the

discriminator so that it can improve the generation ability of the generator and finally

synthesize higher-quality results.

Specifically, we propose an erudite generative adversarial network (denoted as Eru-

diteGAN). In EruditeGAN, the foreground images and segmentation images related to

the original images are introduced into the discriminator. The introduction of these

images can be regarded as additional discriminant types so as to improve the discrim-
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small white 
yellow and 

grey bird with 
medium black 

beak

this flower has 
petals that are 

pink with 
patches of 

yellow

the flower has 
oval wavy 

petals that are 
deep yellow 

colored

this colorful 
bird has a 

deep orange 
breast and 
black and 

orange wings

a large kitchen 
with light 
wooden 

cabinets and 
plenty of light

a pizza with 
broccoli on it 
on the table

Figure 2.24: Some image results synthesized by our proposed EruditeGAN based on
text description are shown above.

inant ability of the discriminator. Due to the confrontation characteristics of GAN,

the improvement of the discriminator ability can circuitously improve the generator’s

generation ability so that the generator can finally synthesize higher-quality results.

Fig. 2.24 shows some results obtained by our proposed EruditeGAN.

2.6.1 Network Structure

The structure of the generator is shown on the left of Figure 2.25. The text description

is encoded as word features and sentence features by a pre-trained text encoder [30].

Among them, sentence features are expanded by conditional augmentation (CA) [4]

technology (the details are shown near Equation 2.10), and then combined with the

noise vector, the image features are generated through a fully-connected layer and

continuous upsampling operations. The generated image features can be converted into

image results through a 3 × 3 convolution layer. Simultaneously, the synthesized image

features and word features will use the dynamic selection method (consistent with the

dynamic selection method in Section 2.5, the details are shown in Equation 2.18-2.23)

to improve semantic consistency. After the dynamic select processing, the features will

be processed by upsampling and residual block [12] operations to synthesize the next
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Figure 2.25: The network structure in the generator and discriminator is shown above.

stage’s image features. This process can be continued to synthesize higher-resolution

images.

The discriminator structure is shown on the right Figure 2.25. For the received

images, the discriminator discriminates from two aspects: whether the image is true

and whether the image and text match. The downsampling features of the image can

be used directly to distinguish real or generated images. For consistency matching,

the downsampling features are combined with the extended dimension text vector to

identify the consistency.

Training algorithm

For our proposed method, the specific training process is shown in Algorithm 1. There

are four kinds of input images in the algorithm, i.e., real/wrong/foreground/segmentation

image. The generated image synthesized by the generator is the fifth type. The
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Algorithm 1 EruditeGAN training algrotihm

1: Input: original real image Ir, wrong image Iw, segmentation image Iseg,
foreground image Ifore, text t
2: for n = 1 to epochs do
3: z = N(0, 1)
4: s = ϕ(t)
5: Igen = G(z, s)
6: dr unc, dr = D(Ir, s)
7: dw unc, dw = D(Iw, s)
8: dgen unc, dgen = D(Igen, s)
9: dseg unc, dseg = D(Iseg, s)
10: dfore unc, dfore = D(Ifore, s)
11: LD t unc = (log(dr unc) + log(dw unc))/2
12: LD f unc = (log(1− dgen unc) + log(1− dfore unc)) + log(1− dseg unc)/3
13: LD unc = LD t unc + LD f unc

14: LD t mat = (log(dr)
15: LD f mat = (log(1− dgen) + log(1− dw) + log(1− dfore)) + log(1− dseg)/4
16: LD mat = LD t mat + LD f mat

17: LD = LD unc + LD mat

18: D = D − ss ∗ ∂LD/∂D
19: LG = log(dgen)
20: G = G− ss ∗ ∂LG/∂G
21: end

discriminator discriminates these five kinds of images and obtains their unconditional

loss and matching loss, respectively. LD t represents the loss of the true sample of the

discriminator, and LD f represents the loss of the wrong sample. unc indicates the

unconditional case. mat stands for the matching case. In the case of unconditional

loss, both real and wrong images come from datasets, so they are true labels. Under

the matching loss, only the real image comes from the dataset, so it is the true label.

The rest are false labels. ss in the algorithm represents step size.
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2.6.2 Loss Function

According to the content of algorithm 1, the specific loss functions are as follows:

LD =
∑

Ir,Iw∼pdata,Igen∼pG,Ifore∼pfore,Iseg∼pseg
{[logD0(Ir, s) + logD0(Iw, s)]/2

[log(1−D0(Igen, s)) + log(1−D0(Ifore, s)) + log(1−D0(Iseg, s))]/3}

+{logD1(Ir, s) + [ log(1−D1(Igen, s)) + log(1−D1(Iw, s))+

log(1−D1(Ifore, s)) + log(1−D1(Iseg, s))]/4}

(2.27)

LG =
∑

(Igen)∼pG
logD0(Igen, s) + logD1(Igen, s) (2.28)

whereD0 represents the discriminator’s first output (unconditional discrimination, that

is, to distinguish the authenticity of the image), and D1 represents the second output

(conditional discrimination, that is, to determine whether image and text match). Ir

and Iw represent real images and wrong images that conform to the image distribu-

tion of the original dataset. Igen, Ifore, and Iseg represent the generated image, fore-

ground image, and segmentation image conform to the generated image distribution,

foreground image distribution, and segmented image distribution. log represents log

means logarithmic function.

2.6.3 Implementation Details

During the up-sampling, in addition to the last convolution, batch normalization (BN)

[39] is performed after each convolution. For text embedding, it performs leaky-ReLU

[41] activation after encoding. The leaky value is 0.2. In our proposed method, we use

ADAM optimization [38] to train 600 epochs for the CUB and Oxford-102 datasets, and

120 for the MS COCO dataset, with an initial learning rate of 0.0002 and a batch size

of 10. For the text encoder and image encoder, we still use a pre-trained text encoder

[30] model and a pre-trained image encoder [31] model to extract corresponding text
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Original 

image

Mask 

segmentation 

results

Figure 2.26: Some segmentation images processed in the CUB, Oxford-102, and MS
COCO datasets are displayed above.

features and image features. For the acquisition of mask segmentation images, we

directly use a pre-trained mask RCNN [50] model to process the original image so as to

obtain the corresponding mask segmentation image. Some obtained mask segmentation

results are shown in Figure 2.26. For the input original image, mask RCNN can detect

the key target and mark the target with the mask.

2.6.4 Experiments

Qualitative results

In the qualitative results, the existing state-of-the-art methods are compared with our

EurditeGAN. The comparison results are shown in Figure 2.27. Among them, the

results of AttnGAN and DMGAN are general in terms of overall authenticity. By

contrast, our results show better authenticity and are closer to the real image. Besides,

our results also have better performance in the fine-grained synthesis, such as eyes,

pecking, tall of bird, smoothness, the brightness of flower, and the detail of pizza and

kitchen, which reflect that our proposed method is excellent in detail processing.

Quantitative results

The IS and FID comparison results on the CUB, Oxford-102 flower, and MS COCO

datasets are shown in Table 2.16. The comparison results show that the performance
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Figure 2.27: The comparison results between our EruditeGAN and AttnGAN, DMGAN
are shown above.

Table 2.16: The comparison results of IS and FID on the CUB, Oxford-102 flower, and
MS COCO datasets between our method and existing state-of-the-art methods.

Model
CUB Oxford-102 MS COCO

IS FID IS FID IS FID

GAN-CLS [3] 2.88±0.04 68.79 2.66±0.03 79.55 7.88±0.07 60.62
GAWWN [42] 3.62±0.07 51.89 - - - -
StackGAN [4] 3.70±0.04 35.11 3.20±0.01 55.28 8.45±0.03 74.05

StackGAN++ [5] 4.04±0.05 15.30 3.26±0.01 48.58 8.30±0.10 81.59
HDGAN [7] 4.15±0.05 22.70 - 29.55 - -
AttnGAN [6] 4.36±0.03 23.98 3.75±0.02 35.49 25.89±0.47 35.49
MirrorGAN [8] 4.56±0.05 29.81 - - 26.47±0.41 -
SEGAN [28] 4.68±0.04 18.17 - - 27.86±0.31 32.38
DMGAN [10] 4.75±0.07 16.09 4.03±0.05 21.36 30.49±0.57 32.64

TVBi-GAN [47] - 11.83 - - - 31.97
EruditeGAN 4.69±0.07 9.58 4.07±0.05 17.69 31.94±0.47 28.79

Table 2.17: The R-precision comparison results of AttnGAN, DMGAN, and our
method.

Model CUB Oxford-102 MS COCO
AttnGAN [6] 67.82±4.43 67.64±0.89 85.47±3.69
DMGAN [10] 72.31±0.91 77.25±0.77 88.56±0.28
EruditeGAN 77.62±0.90 80.25±0.69 91.26±0.40
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Table 2.18: The comparison results of IS and FID on the CUB, Oxford-102 flower, and
MS COCO datasets between our method and existing state-of-the-art methods. ‘

√
’

represents to use this type of image and ‘−’ means not to use it.

fore seg
CUB Oxford-102 MS COCO

IS FID R IS FID R IS FID R√
- 4.63 12.01 73.22 4.01 22.75 77.95 29.68 30.83 89.64

-
√

4.67 10.22 75.53 4.03 19.45 79.12 30.05 31.79 90.48√ √
4.69 9.58 77.62 4.07 17.69 80.25 31.94 28.79 91.26

of our method is better than the existing state-of-the-art methods. IS can measure

the quality and diversity of the generated results, and FID can measure the distance

between the synthetic image and the real image. Therefore, our method performs

excellently on IS and FID can demonstrate that the synthetic results of our proposed

method have better quality and are closer to the real image effect. The R-precision

comparison results among AttnGAN, DMGAN, and our EruditeGAN are shown in

Table 2.17. The results reflect that our method’s synthesized images are most consistent

with the input text’s semantic information.

Ablation Study

In order to further analyze the effectiveness of different image types introduced into

the discriminator, we conduct ablation experiments. The specific ablation results are

shown in Table 2.18. The first two lines’ results reflect that it can play a useful role

in promoting whether the foreground image or the segmentation image is added to the

discriminator. The results of the last line show that the best results can be achieved

when both types of images are added to the discriminator.
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Figure 2.28: The qualitative comparison results among our proposed T2I methods,
including DrawGAN, INS fore, and EruditeGAN.

2.7 Internal Comparison of Proposed Methods

2.7.1 Qualitative Comparison

In order to improve the quality of T2I synthetic images, we have proposed three meth-

ods: DrawGAN: Text to Image Synthesis with Drawing Generative Adversarial Net-

works; Text-to-Image Synthesis: Starting Composite from the Foreground Content;

Text to Image Synthesis with Erudite Generative Adversarial Networks., respectively

expressed as DrawGAN, INS fore, EruditeGAN.

The qualitative comparison results of the three proposed methods are shown in

Fig. 2.28. From the generated results, the synthetic results of each method have

good quality, which reflects the effectiveness of our proposed methods in improving the

quality of image synthesis. In contrast, the synthesis effect of INS fore is better than

that of DrawGAN, which shows that the method of first synthesizing forward content
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Table 2.19: The quantitative comparison results of IS and FID on the CUB, Oxford-
102 flower, and MS COCO datasets among our proposed methods.

Method
CUB Oxford-102 MS COCO

IS FID R IS FID R IS FID R
DrawGAN 4.76 9.87 77.99 4.07 20.24 77.70 31.11 31.51 89.20
INS fore 4.79 9.29 77.86 4.19 18.96 79.32 30.70 29.55 90.36

EruditeGAN 4.69 9.58 77.62 4.07 17.69 80.25 31.94 28.79 91.26

based on text information and then synthesizing the final result is better than the

method of gradually synthesizing contour, foreground, and final content. The reason is

that the text information describes the specific content that needs to be synthesized,

but the contour information does not match it. Therefore, in DrawGAN, the method of

synthesizing contour information based on the text at first increases a little difficulty of

the whole synthesis task, resulting in limited quality improvement. In comparison, the

foreground information is matched with the text information, so the INS fore method

makes the whole synthesis task simpler and can achieve better quality improvement.

For INS fore and EruditeGAN, there is no obvious difference in image synthesis

quality, which indicates that both approaches achieve satisfactory quality improvement.

2.7.2 Quantitative Comparison

The quantitative comparison results of the three proposed methods are shown in Table.

2.19. Overall, the results of INS fore and EruditeGAN methods are slightly better

than DrawGAN. Compared with INS fore and EruditeGAN, the performance of the

EruditeGAN method on the MS COCO dataset is better. The main reason is that for

the composition of complex images, both foreground content and background content

are important. INS fore only focuses on the synthesis of foreground content at the

beginning, resulting in limited quality improvement of its final result. EruditeGAN

does not have such a problem and can improve the quality of synthesis through multi-

class discriminant feedback, so it achieves the best performance in complex image

synthesis.
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2.8 Chapter Conclusions

In this section, we propose three methods (DrawGAN, INS fore, and EruditeGAN) to

improve the synthesis quality of T2I. For each proposed method, we conduct a detailed

introduction, including network structure, loss function, implementation details, and

experiments. At the same time, we also compared the three methods we proposed

internally and obtained the following conclusions:

• The three methods we proposed all have a good role in improving the quality of

T2I image synthesis;

• The overall performance of INS fore and EruditeGAN is slightly better than

DrawGAN;

• In complex image synthesis, EruditeGAN achieves the best synthesis perfor-

mance.

In the next chapter, we will introduce the high controllability oriented image syn-

thesis methods.
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Chapter 3

High Controllability Oriented Image

Synthesis Methods

3.1 Introduction

In order to make the image generation structure more valuable, it is necessary to

provide high-level control information. The current research mainly starts from two

directions: one is to control the shape of synthesis, and the other is to control the

content of synthesis. The main form of shape control is to enter a profile, such as a

simple outline of a shoe or bag. Then the input contour is used to synthesize the image.

The biggest problem of this method is that only shape information can be controlled,

but not the specific details. For example, if input the contour of a package, this method

cannot determine the color information of the package in the synthesis result. In the

related model [51], [52], the specific details (such as color) are determined by the image

in the training set. If the training set has a yellow packet, it is possible to synthesize the

yellow packet based on the contour of the packet. However, if there is no blue package

in the training set, the model cannot synthesize the blue package. This reflects that

the degree of control for this approach is limited.

The method to control the content of synthesis starts with the use of text informa-

tion control. At first, conditional GAN (CGAN) [2], [53] used the category attributes

of images (such as flower and bird) to control the categories of image synthesis. This

method can only control the category of the composite content, but not for more spe-

cific details. For example, if the category label is a bird, the model can synthesize a

bird image, but the color, size, and other information of the bird cannot be controlled.
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Furthermore, Reed et al. [3] proposed image synthesis based on text description

information (like “this bird is black with white and has a long, pointy beak”), which

makes the whole synthesis process more flexible and conforms to human input habits.

This approach demonstrates great flexibility and more control over the content. Since it

is more conform to people’s input habits, it has better application prospects because the

current research of artificial intelligence is more inclined to serve people. Nevertheless,

the text description controls both the object and detailed information, but for the

shape, size, and position of the object, it seems to be ineffective. For the research

of image synthesis based on the text description, many works have been done, and

encouraging results have been achieved. However, none of these works can control the

shape, size, and position of the synthesized object.

To alleviate this problem and achieve better control of the synthesis details, Reed

et al. proposed the Generative Adversarial What-Where Network (GAWWN) [42],

using the bounding box and the key points to determine the location and shape of the

target, and then generated specific content based on the text description. GAWWN

is more flexible and controllable. On the one hand, the input information (bounding

box, key point, and text description) can be determined artificially. On the other

hand, the overall control degree is higher than that of only using the text description.

Although GAWWN has achieved some success, it has two obvious problems. Firstly,

the authenticity of the result is comparatively poor. Secondly, the control implemented

by using the bounding box or key points is relatively rough, which does not achieve

the real fine-grained control effect.

3.2 Related Works

Compared with the traditional research of image processing, image generation is more

challenging. Mansimov et al. [54] proposed the alignDRAW model, which is an ex-

tension of the Deep Recurrent Attention Writer (DRAW) [55] model, by learning to
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estimate alignment between generating results and text. Autoregressive models [56],

[57] obtained arresting results by modeling the conditional distribution of pixel space

using the neural network. [58], [59] realized image synthesis by using the deterministic

network as function approximation. Variational Autoencoders (VAE) [12], [60] defined

the generation problem as a probability graph model and achieved the final generation

by maximizing the lower bound of data likelihood. Besides these, the best overall per-

formance ability is Generative Adversarial Networks (GAN) [1][14][61][13][62][63]. It

has shown encouraging image generation results. Because of the instability of training,

many improvement works have been proposed to stabilize the training process and

improve the quality of synthesis.

In order to make the generative image model useful, conditional image synthesis

has been explored. The initial condition generation is based on simple image attributes

or class labels [2], [53], which has achieved some better results, but it is not suitable

for human basic input habits because it may require some professional knowledge.

Besides, using property or category labels can not control the details. After that,

there are some works of image generation conditioned on the image (pixel to pixel),

including image super-resolution [64], [21], image editing [24]–[65], image style transfer

[51], [66], [18]. Since the image is as the input, the overall content cannot be changed

greatly, which limits the artificial control factors to a certain extent. In these works,

there is a way of simple input and strong control, that is to utilize simple contour to

synthesize image. This method is more practical than using labels because it fixes the

basic shape of the synthetic image. Nevertheless, it can only control the shape and

but not detailed information. At present, the image generation, which accords with

the habit of human input, is using text description to synthesize images. Reed et al.

[3] first implemented text-to-image synthesis using the end-to-end GAN architecture

based on adversarial learning, which generated realistic images. Subsequently, Zhang

et al. [4], [5] proposed StackGAN to generate more realistic results through multi-stage
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adjustment. Xu et al. [6] used the attention mechanism to make local fine-tuning to

obtain better results. Based on the attention mechanism, Qiao et al. [8] and Zhu et al.

[10] respectively utilized text reproduction and dynamic memory to improve the quality

of results further. Zhang et al. [7] proposed a hierarchical nesting structure, and could

generate larger and more vivid images. Qiao et al. [9] employed prior knowledge to

improve the quality of synthetic images further. Its prior knowledge is obtained from

the result with the mask. Although the results of text-to-image synthesis are more

real and more abundant, there is the same problem — for the same text description,

the model can generate a variety of results that conform to the text description but

have different shapes, sizes, and orientations, which means that the input text can

only control the generated content, but not the specific shape. This problem makes

the current image synthesis model based on text description less practical.

For better flexible and effective control, based on the text description, Reed et al.

[42] proposed the GAWWN structure and realized the controllable image generation

process for the first time by combining the object location and other annotations. The

size and position of the object are determined by inputting the bounding box and

key points information. No matter the bounding box, key points, or text description,

GAWWN can be input artificially, which makes GAWWN have pretty practicability.

However, their results are not satisfactory as well as the bounding box, and key points

are rough information, which cannot accurately determine the specific shape of the

object.

3.3 Method 1 — Customizable GAN: A Method

for Image Synthesis of Human Controllable

To achieve better fine-grained control and generate more authentic results, we propose

a customized GAN. The image is generated by combining the contour and text descrip-

61



this bird is gray, white, 

and blue in color, and 

has a very skinny beak

this bird has wings that 

are brown and has a 

yellow belly

the petals are pink with a 

hint of orange on them

this flower is yellow in 

color, with petals that 

are oddly shaped

contour_bird

contour_flower

Figure 3.1: The results of the corresponding birds and flowers under different texts
and contours. They are consistent with the corresponding text description while re-
taining the contour shape. The left contours are obtained by pre-processing the original
dataset. The contours on the right are drawn by hand.

tion, as shown in Fig. 3.1. The contour is used to determine the specific shape, size, and

position information of the object. Then the text description is used for generating the

specific content. Finally, high-quality images based on the hand-drawing contour and

artificial text description are obtained by our method. It realizes fine-grained control

while also completing the generation of the realistic image.

3.3.1 Network Sturcture

Structure diagram

The architecture of our method is shown in Fig. 3.2 and 3.3. It is built upon condi-

tional GAN framework conditioning on both contour and text description. Fig. 3.2

shows the network structure of the generator. In the generator, the contour and text

description in the input is encoded in different ways and combined together, and then

the corresponding result is synthesized by de-convolution [36].
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this bird has wings 
that are black and 

has a yellow striped 
belly

+

Generator

conv FC residual upsampling

contour

5

Text 

Encoder

Image Encoder

Figure 3.2: The generator structure of the model. The generator synthesizes the corre-
sponding image based on the text description and contour. The synthesized image not
only retains the contour shape but also conforms to the text description information.

Specifically, in the generator, we use a convolutional neural network with three

convolutional layers as an image encoder to extract contour features. In addition,

in specific experiments, we also try to use VGG16 or VGG19 as a pre-trained image

encoder [67] to extract the corresponding contour feature (See Section 3.3.4 for details).

The text description is encoded as a text vector by the pre-trained text encoder [68],

and then its dimension is changed to 128 through a fully connection (FC). Referring

to the work of Zhang et al. [4], conditional augmentation (CA) has also been added to

increase the number of text embeddings. The corresponding content of the conditional

augmentation is shown near Eq. 2.10.

In order to combine text embeddings with feature extraction from the contour,

spatial replication is performed to expand the dimension of text embeddings. Finally,

the dimension of the contour extraction feature is 16 × 16 × 512, and the dimension

of text embeddings is 16 × 16 × 128. After the connection, it will pass through two

residual transformation units, which are composed of residual blocks [37]. Accordingly,

the employment of residual blocks is to make the connection features more effective

through deeper layer processing. On the other hand, it can better learn the feature

representations to ensure the contour of the generated image is consistent with the input
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Figure 3.3: The discriminator structure of the model. The discriminator judges whether
the received image itself is real or generated and the matching degree between the image
and text.

contour. Finally, the generator synthesizes the corresponding result by up-sampling.

The discrimination process consists of two parts: the discrimination of real or gen-

erated image and of the consistency of image and text description. Fig. 3.3 shows the

network structure of the discriminator. In the discriminator, there is feature extraction

of the input image through down-sampling. There are two kinds of down-sampling.

One is used to distinguish the real or generated image. The other is to distinguish the

consistency of the image and text. The down-sampling for the real or generated image

discrimination consists of two convolution layers: the first layer is followed by BN [39]

and leaky-ReLU [41], the second layer is directly followed by the sigmoid function. For

the discrimination of the consistency of the image and text, the image features are

first extracted through five convolution layers, then combined with the text vector of

extended dimension, and finally identified by two convolution layers. Each convolution

layer is followed by BN and leaky-ReLU, except for the last layer for discrimination.

Unlike the generator, the features extraction dimension in the discriminator is 4 × 4

× 512, and the text embeddings dimension is 4 × 4 × 128.
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Training algorithm

Customizable image synthesis determines the shape through the contour and defines

the specific content through the text description. This indicates that the result of

the synthesis should match the basic shape of the input contour as well as the text

description. We utilize the method of adversarial learning to train the whole process,

as shown in algorithm 2.

Algorithm 2 CustomizedGAN training algrotihm

1: Input: matched text T , mismatched text Tmis,
2: relevant text Trel, real image Ireal,
3: contour con, number of epochs N
4: for n = 1 to N do
5: s = ϕ(T )
6: smis = ϕ(Tmis)
7: srel = ϕ(Trel)
8: Igen = G(con, s)
9: d, ducond = D(Ireal, s)
10: dgen, dgen ucond = D(Igen, srel)
11: dmis, dmis ucond = D(Ireal, smis)
12: LD real = log(d) + log(ducond)
13: LD mis = (log(1− dmis) + log(dmis ucond))/2
14: LD gen = (log(1− dgen) + log(1− dgen ucond))/2
15: LD = LD real + LD mis + LD gen

16: D = D − ss ∗ ∂LD/∂D
17: LG = log(dgen) + log(dgen ucond)
18: G = G− ss ∗ ∂LG/∂G
19: end

There are three types of text input in the training process, that is, the matched

text T , the mismatched text Tmis, and the relevant text Trel. T represents the text

that matches the real image, and Tmis represents the text that does not match the

real image. Trel represents the text related to the semantics of the generated image.

The three types of texts and the corresponding images form three types of image-text

pairs for the discriminator to discriminate to improve the discriminator’s discrimination

ability in the image-text consistency so that the final image generated by the generator
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is more match the input text. In the algorithm, ϕ is a pre-trained text encoder [68]

used to encode text into vectors. The generator synthesizes generated images based on

the input contour and text. The discriminator distinguishes three situations: the real

image with the matched text, the generated image with the relevant text, and the real

image with the mismatched text. The purpose of introducing text that does not match

the real image is to make the whole network learn the situation of mismatch so that it

can improve the final matching degree. Unlike the general GAN, the discriminator in

our algorithm returns two outputs: first is the degree of the image-text matching, and

second is the judgment of the authenticity of the image. The advantage of this method

is to distinguish the results from many aspects to improve the discrimination ability

of the discriminator. G and D are updated by the SGD method, where ss is the step

size.

3.3.2 Loss Function

According to the training algorithm, the specific loss functions are as follows:

LD =
∑

Ireal∼pdata,Igen∼pG
{logD0(Ireal, T ) + [log(1−D0

(Ireal, Tmis)) + log(1−D0(Igen, Trel))]/2}

+{logD1(Ireal, T ) + [logD1(Ireal, Tmis)+

log(1−D1(Igen, Trel))]/2}

(3.1)

LG =
∑

Igen∼pG
logD0(Igen, Trel) + logD1(Igen, Trel) (3.2)

where D0 represents the first output of the discriminator and D1 represents the second.

Ireal represents the real image conforming to the image distribution of the original

dataset, and Igen represents the generated image conforming to the distribution of the

generated image. In LD, the content of the first brace represents the unconditional loss

(discriminating the authenticity of the image), and the second brace content represents
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the conditional loss (determining whether the image and text match). log represents

log means logarithmic function.

3.3.3 Implementation Details

In the training process, the initial learning rate is set to 0.0002, and it decays to half

of the original every 100 epochs. Adam optimization [38] with a momentum of 0.5 is

used to optimize and update parameters. A total of 600 epochs are trained iteratively

in the network, of which the batch size is 10. In leaky-ReLU, the leaky value is 0.2.

For the image encoder used to extract contour features in Figure 3.2, there are three

cases in total: 1) use three convolutional layers directly (denoted as ‘without VGG’); 2)

use the pre-trained VGG16 model (denoted as ‘with VGG16’); 3) use the pre-trained

VGG19 model (denoted as ‘with VGG19’). In the following content, ‘Customizable

GAN’ and ‘ours’ both represent the first case; ‘Customizable GAN(with VGG16)’ and

‘ours+VGG16’ both represent the second case; ‘Customizable GAN(with VGG19)’,

‘ours+VGG19’ both represent the third case.

3.3.4 Experiments

Qualitative results

Firstly, we compare the existing text-to-image synthesis model. The existing T2I model

has two main directions. One is based on the multi-stage synthesis, and the other is

based on the attention mechanism. AttnGAN [6] not only uses multi-stage synthesis

but also is based on the attention mechanism, so we choose AttnGAN as the repre-

sentative model for comparison. The specific results are shown in Fig. 3.4. From

the comparison results, it can be seen that for the same text description, our model

not only conforms to the text description but also can control the shape of the final

synthesized object through simple contour. For AttnGAN, multiple results can be

synthesized, but the shape, size, and position of the synthesized object are different,
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this particular bird has a belly 

that is yellow and black patches

this bird is green, white, brown 

and black in color, with a very 

skinny long beak

this bird has a pointed bill, with 

a blue back

small brown bird with light tan 

feathers on its belly and white 

feathers around its nape

 Customizable GAN AttnGAN

Figure 3.4: The comparison between our method and the existing text-to-image synthe-
sis method. The text-to-image synthesis model can not control the contour information
of the synthesized object, and we can control the specific contour of the object while
conforming to the basic text description information.

the bird has small beak when compared 

to its body, it has black beak, crown, 

nape, throat, breast, tarsus and feet

this bird is brown with 

yellow and has a very 

short beak

this bird is gren with blue 

and has a very short beak

 Customizable GAN

this bird has wings that are 

grey and has an orange throat

the is colorful bird has a 

short black beak with 

orange feet

a small plump bird with short 

pointed bill, the coverts are 

yellow and the wingbars are black

GAWWN_kpGAWWN_bb

Figure 3.5: The comparison between our method and GAWWN (including two results
based on bounding box and key points). It can be seen from the comparison results
that our results are obviously superior to GAWWN and have a better degree of control
than GAWWN.
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this black bird has a 

brown crown and a 

short, thick bill

 Customizable GAN

this is a small bird with a white 

belly, a tan breast, a dark grey 

crown, and a small bill

this particular bird has a 

yellow belly and breast 

with black patches

the is colorful bird has a 

short black beak with 

orange feet

small bird with upright reddish feathers in the 

crown, beak is orange, tail and secondaries are red 

and black, brown belly, foot and tarsus is black

GAWWN_kpGAWWN_bb

Figure 3.6: The comparison results of the second group between our method and
GAWWN. These results also reflect the roughness control and poor authenticity of
GAWWN. In contrast, our results are more realistic, and the degree of control is also
more refined.

which indicates that the existing T2I model can not control the specific style. This re-

flects the low practicability of the existing T2I model. Compared with the existing T2I

model, GAWWN [42] and our method are all studying in the direction of more effec-

tive image synthesis control. Meanwhile, the input of GAWWN can also be artificially

controllable. Therefore, we choose to compare our method with GAWWN.

Compare our method with the existing controllable image synthesis based on text

and annotations (GAWWN), as shown in Fig. 3.5 and 3.6. There are two kinds of

comments in GAWWN: the bounding box, and the key point information. In the figure,

GAWWN bb represents the GAWWN result based on the bounding box. The input

bounding box can only control the generated area, which is powerless for the specific

shape and orientation. GAWWN kp represents the corresponding result based on the

key points. Key points control the basic position and orientation of the generation, but

the specific shape cannot be determined. Simultaneously, the synthesis results based on

the bounding box and key points generally have poor authenticity. All these shows that

indicate although GAWWN has high flexibility in image synthesis, its overall control

is relatively poor and rough, and the results of synthesis are not satisfactory.
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this bird is white, 

yellow, and black in 

color, with a black beak

this bird has a brown 

crown, brown primaries, 

and a grey belly

this bird has a short 

black bill, a blue crown, 

and a white throat

a brown bird that has pale brown 

color on its ventral side and has 

brown head, wings and tail

 Customizable GAN
 Customizable GAN 

(with VGG16)

 Customizable GAN 

(with VGG19)

this bird has a colorful yellow and 

blue bill, yellow belly and breast 

with black and white wings

the bird has a grey head and a 

yellow body while being plump

a small plump bird with short 

pointed bill, the coverts are yellow 

and the wingbars are black

contour

Figure 3.7: The comparison bird results of our method without VGG and with VGG16,
with VGG19. It can be seen that the results of using VGG are better in details (such
as eyes, pecking).

Compared with GAWWN, our method has a higher control ability, evidenced by

the specific shape, position, and orientation of the synthesized results. This shows

more fine-grained control than GAWWN’s rough control and realizes the genuinely

customized image synthesis. For the generated results, on the one hand, our method

maintains consistency with the input contour and text description. On the other hand,

it is better than GAWWN in authenticity. This demonstrates the superiority of our

method in controlling the generation of authentic results.

In addition to the comparison with GAWWN, we also made an internal comparison.

In this paper, we compared the three methods of contour feature extraction without

VGG, with VGG16, and with VGG19, as shown in Fig. 3.7. The results of the three

methods have a high degree of authenticity. They maintain both the shape of the

input contour and match the content of the text description. From a more detailed

level (eye, pecking, texture) of comparison, the results obtained by using VGG are

better than those not applicable to VGG, which makes the results of using VGG have
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this flower is red in color, 

with petals that are wavy

the petals are pink 

with a hint of orange 

on them

 Customizable GAN
 Customizable GAN 

(with VGG16)

 Customizable GAN 

(with VGG19)

this flower has a round spiky 

center surrounded by long thin 

pink petals

the petals on this flower are 

purple fading to both white and 

yellow

the flower has petals that are 

yellow with yellow filaments 

and red anthers

this flower has yellow petals 

that are curled in

contour

Figure 3.8: The comparison flower results of our method without VGG and with
VGG16, with VGG19.

pretty authenticity. Compared to VGG16, VGG19 handles the details of the texture

better to make the results more realistic.

We extended our method on the flower dataset and made the internal comparison,

as shown in Fig. 3.8. The results of the three methods are authentic. Overall, all results

maintain the shape of the contour and conform to the text description. In comparison,

VGG16 has a higher degree of agreement with the contour because it reflects better

the overall details of the contour, which makes its results have higher authenticity.

Quantitative results

For the evaluation of the generation model, Human Rank (HR) is used to quantify

the comparison models. HR can be used to evaluate whether the synthesized image

conforms to subjective effects (such as authenticity, matching degree with text, etc.),

and it is widely used in various image synthesis works, such as [24], [4], [5].

In this work, we employed 10 subjects to rank the quality of synthetic images by

different methods. The text descriptions and contours corresponding to these results

are all from the test set and are divided into 10 groups for use by 10 subjects. For
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the bird datasets, we established two ways for quantitative comparison. One of them

contains three results: 1) GAWWN bb, 2) GAWWN kp, and 3) ours without VGG. The

other includes five synthetic results: 1) GAWWN bb, 2) GAWWN kp, 3) ours without

VGG, 4) ours with VGG16, and 5) ours with VGG19. In this way, the comparison of

the bird is three tuples (bird 1) and five tuples (bird 2), respectively. The employers

were not informed of the method corresponding to the result, but only knew the text

description and contour, bounding box, and key points corresponding to the current

result. The subjects were asked to rank the results (bird 1: 1 is best, 3 is worst; bird 2:

1 is best, 5 is worst) in the following ways:

• Whether the result is highly consistent with control information (the contour or

bounding box or key points);

• Whether the result matches the text description;

• The level of the authenticity of all results.

The average score will be calculated for the ranking results of all subjects, as shown

in Tables 1 and 2. The comparative results show the following points:

Table 3.1: The results of quantitative comparison between our three methods and
GAWWN. It includes three aspects of comparison: one is the consistency with the
control information (consistency), the other is the matching with the text content
(text), and the third is the authenticity of the results (authenticity).

GAWWN bb GAWWN kp ours ours+VGG16 ours+VGG19

consistency 4.64 4.18 2.12 2.00 2.02

text 4.10 3.80 2.40 2.34 2.30

authenticity 4.46 3.90 2.37 2.20 2.07

More authenticity and better text matching. Compared with GAWWN in

Tables 3.1 and 3.2, it is obvious that our method has higher authenticity and degree

of text matching. In comparison, the results of using key points (kp) in GAWWN are
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Table 3.2: The quantitative comparison results between our method with GAWWN in
CUB dataset.

GAWWN bb GAWWN kp ours

consistency 2.78 2.51 1.27

text 2.46 2.28 1.44

authenticity 2.67 2.34 1.42

better than those of using the bounding box (bb). However, compared with our results,

the overall authenticity and matching of GAWWN kp are still worse than ours.

More effective control. In the process of image synthesis, the control of our

method is more effective since it shows better consistency with the control informa-

tion. The control degree of GAWWN kp is better than that of GAWWN bb. This

is consistent with the subjective comparison. In subjective results, GAWWN kp can

control the basic direction of synthesis, but GAWWN bb cannot. Compared with

GAWWN kp, our method has more excellent control. The reason for this circum-

stance is that our results can not only control the synthesis direction but also control

the specific shape, while GAWWN kp can not control the shape.

Better performance when using VGG. Table 1 shows that the results obtained

by our three methods (without VGG, wit VGG16, with VGG19) are not significantly

different. In close comparison, the results of using the VGG model are better than

those of not using VGG. This reflects that VGG can extract better contour features

and promote the synthesis of final results.

Table 3.3: The internal quantitative comparison results of our methods in CUB dataset.

ours ours+VGG16 ours+VGG19

consistency 1.27 1.20 1.21

text 1.44 1.40 1.38

authenticity 1.42 1.32 1.24
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Table 3.4: The internal quantitative comparison results of our methods in Oxford-102
flower dataset.

ours ours+VGG16 ours+VGG19

consistency 1.25 1.12 1.23

text 1.23 1.15 1.23

authenticity 1.28 1.15 1.17

Ablation Study

It can be found in Table 3.1 that among the results of birds, VGG19 is better than

VGG16, and VGG16 is better than not using VGG. Does this phenomenon also apply

to flower results? What are the differences between not using VGG and using VGG

16 and VGG 19 and the reasons behind the differences? To solve these problems, we

conducted an ablation study.

For the internal comparison of our three methods, it can be seen from Table 1 that

there is no obvious difference. In the separate comparison, the result of using VGG

is better than that of not using VGG. In Tables 3.3 and 3.4, among the results of

birds, the overall authenticity of VGG19 is better than that of VGG16, while that of

flowers is the opposite. The reason for this is that the proportion of birds in the image

is relatively small (generally less than 50%), so the judgment of the authenticity of

bird image is more dependent on the generation of bird details. VGG19 performs the

best authenticity in generating bird results, which shows that it does best in detail

generation. Compared with bird images, the proportion of flowers in the image is

generally more than 80%, so its authenticity depends on the overall structure. In the

authenticity of flower results, VGG16 is better than VGG 19, which indicates that

VGG 16 does the best performance in structural consistency. Although VGG19 can

obtain pretty detailed information in flower results, the authenticity of VGG16 results

is better because flowers pay more attention to integrity. VGG16 also showed the best

structural consistency in birds results, indicating that VGG16 is indeed better than
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this is a small bird with a white 

head, black primaries, and white 

breast

the bird has a black colored 

abdomen and wings with streaks 

of yellow on its side, and red 

colored crown

this small bird has yellow breast 

with white point on its beautiful 

wings

this bird has black with blue on 

its wings and has a very long 

beak

contour_hand

Figure 3.9: The text descriptions on the left are all artificial descriptions that do not
exist in the dataset. The contours are also drawn manually. The results show the
effectiveness of our method in generating high-quality results and high flexibility in
image control generation.

VGG19 in terms of structural consistency.

On the whole, VGG19 is better than VGG16 in detail synthesis, and VGG16 is

better than VGG19 in overall structure synthesis. This is reasonable because VGG19

is deeper than VGG16, so it can extract more detail-oriented feature information. The

number of layers of VGG16 is relatively small, so it pays more attention to the overall

feature information. VGG is a network structure specially designed for feature extrac-

tion, which performs well in classification, segmentation, and other tasks. Therefore,

the use of VGG is better than the simple use of convolution operation (without VGG)

to extract features, so the final performance is better.

Controllable image synthesis

The most important feature of our work is to realize fine-grained controllable image

synthesis based on artificial hand drawing and manual description. The relevant results

are shown in Fig. 3.9 and 3.10. Both the contour and the text description in the figure

are artificial and do not exist in the dataset. Besides, it can also be seen from the

results that our model can generate corresponding high-quality results for the different
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this flower has bowl-shaped sky-

blue petals with some purple line 

on them

this pink flower has some very 

smooth petals

a colorful flower has a yellow 

pedicle surround with blue and 

white petals

the petals of the flower are 

yellow in color

contour_hand

Figure 3.10: The text descriptions on the left are all artificial descriptions that do not
exist in the dataset. The contours are also drawn manually. The results show the
effectiveness of our method in generating high-quality results and high flexibility in
image control generation.

contours of shapes, sizes, positions, and orientations. Such as shown in the bird results

in Fig. 3.9, the first, second, and third columns well show that the model can synthesize

high-quality results based on different contour sizes and positions. At the same time,

the fourth, fifth, and sixth columns also show that the model can adapt to different

contour orientations and generate high-quality results. The flower results in Fig. 3.10

also reflect that the model can adapt to different contour shapes, sizes, and orientations

and generate high-quality flower results. These results not only reflect well the hand-

drawn contour and artificial text description content but also have a high degree of

authenticity. This demonstrates the effectiveness of our method in synthesizing high-

quality authentic images and shows the high flexibility and controllability of our method

because all inputs can be controlled artificially.

Complex image synthesis

In addition to generating images of birds and flowers, we also test the synthesis perfor-

mance of our proposed method on complex images. Specifically, we use the pre-trained
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Input 

Text

Input 

Contour

Generated 

results

A bowl with 

rice, broccoli and 

a purple relish

Two zebras who 

are grazing on 

some grass

An elephant 

picks up an 

object with its 

trunk

A very large 

commercial 

plane flying in 

blue skies

Figure 3.11: Based on text and contour information, the complex image synthesis
results are shown above.

VGG19 model for contour feature extraction and train our designed network structure

200 epochs in the MS COCO dataset. Fig. 3.11 shows the generation results of our

proposed method on complex images. Overall, the generated results are terrible. We

can find that the content of generated zebras, elephant and airplane is very abstract,

and the content of generated food is also very mediocre. Such poor results on complex

images show that our proposed method still has a lot of room for improvement.

3.4 Method 2 — TCGIS: Text and Contour Guided

artificially controllable Image Synthesis

Our proposed CustomizableGAN achieves a more controllable image synthesis effect by

using text and contour information, where the text information is used to control the

component content, and the contour information is used to control the basic shape, size,

and position information of the synthetic object. Although CustomizableGAN achieves

a more controllable image synthesis effect, however, according to the results in Figures

3.9, 3.10, and 3.11, it can be found that CustomizableGAN still has a large room for

improvement in image synthesis quality, especially in complex image synthesis.

77



this bird is red and
black in color with a

black beak and red eye
rings

Input text Input contour Output

this flower is pink and
red in color, and has
petals that are oval

shaped

Picture of multiple ties
of different colors
hanging on a rack

Figure 3.12: The basic structure of our proposed method is shown in the figure above.
By deeply fusing textual and contour information, our proposed structure finally syn-
thesizes high-quality and satisfactory image results.

In order to solve the problem of insufficient synthesis quality in CustomizableGAN

and achieve a controllable and high-quality image synthesis effect, we refer to the

structure design of T2I and design a more complicated network structure to achieve

higher quality image synthesis. In addition, our designed network structure still accepts

text and contour information as input to make it highly controllable. Figure 3.12 shows

some synthetic results achieved by our designed structure. The results demonstrate

that our designed architecture achieves a highly controllable and higher-quality image

synthesis effect.

3.4.1 Network Structure

The structure of our proposed method is shown in Figure 3.13. For the input text

description and contour information, they are encoded as corresponding features by

the text encoder [30] and image encoder [31], respectively. The text features include

global sentence features (s) and local word features (w). The encoded contour features

(c) and sentence features are first fused together, and then the initial fusion features
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Figure 3.13: The basic structure of our proposed method is shown in the figure above.
By deeply fusing textual and contour information, our proposed structure finally syn-
thesizes high-quality and satisfactory image results. w, s, and c represent word features,
sentence features, and contour features, respectively.

are obtained through multiple consecutive upsampling operations. After that, the

word features first perform attention fine-tuning on the initially fused features, and

then perform in-depth fusion with the fused features through the affine combination

module (ACM) [69]. After the processing of residual block [37] and upsampling, two

consecutive attention, ACM, residual block, and upsampling operations are repeated

and the corresponding image result is finally generated. The reason for repeating the

above operations is to deeply fuse text and contour information and gradually increase

the resolution of the synthesized result. Finally, the size of the image synthesized by

our proposed method is 256×256.

In the structure, the core modules are the attention mechanism and affine combi-

nation module (ACM), and their corresponding details are as follows:

Attention mechanism. To synthesize higher-quality image results, we employ

the spatial and channel attention mechanism [26] to fine-tune the fused features using

word features. The equations in the processing are as follows:

f = Up(s, c) (3.3)

m = DT (w) · f (3.4)

ci,j =
exp(mi,j)∑H∗W−1

l=0 exp(mi,l)
(3.5)
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f
′

j =
N∑
i=1

ci,j ∗ fj (3.6)

where s, c, and w represent sentence features, contour features, and word features,

respectively. Up represents the upsampling operation. DT represents the dimension

transformation operation, it can make the dimension of w match the dimension of f

so that they can perform matrix operation. ‘·’ stands for the matrix multiplication

operation. ci,j represents the semantic consistency between the ith word feature and

the jth region feature in f . exp means exponential function. f
′
represents the fusion

feature after fine-tuning of the attention. H and W represent the height and width of

the feature. N represents the number of the word in the input text.

The above process is the processing process of the first attention in Fig. 3.13. The

processing of the last two attentions in the structure is as follows:

f
′

acm = ACM(f
′
, c) (3.7)

f
′

res = Res(f
′

acm) (3.8)

f
′

up = Up(f
′

res) (3.9)

m
′
= DT (w) · f ′

up (3.10)

c
′

i,j =
exp(m

′
i,j)∑H∗W−1

l=0 exp(m
′
i,l)

(3.11)

f
′

j =
N∑
i=1

c
′

i,j ∗ f
′

up (3.12)

where ACM represents the affine combination module. Res denotes the residual block

processing operation. f
′
represents the updated features.

Affine combination module. ACM takes the fused features after attention and the

contour features input at the beginning. It will further fuse these two features, and the
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specific equation is as follows:

f
′

acm = f
′ ⊗W (c) + b(c) (3.13)

where W (c) and b(c) are the learned weights and bias based on the c, and ⊗ represents

the Hadamard element-wise product.

3.4.2 Loss Function

The loss of the whole structure includes the generator and the discriminator’s loss.

The generator’s loss function consists of two parts: adversarial loss and perceptual

loss. The equation of adversarial loss in the generator is as follows:

LGadv
= −1

2

∑
Igen∼PG

logD(Igen) − 1

2

∑
Igen∼PG

logD(Igen, s) (3.14)

where Igen represents the generated image, s represents textual information. PG denotes

the distribution of the generated images. log represents log means logarithmic function.

The first term refers to the discriminator to distinguish whether the generated image

is real or fake. The second term refers to the discriminator to determine whether the

generated image matches the input text.

The specific perceptual loss calculation is as follows:

Lper =
1

CHW
∥θ(Iori)− θ(Igen)∥22 (3.15)

where CHW represents the channel, height, and width of the generated image, and θ

denotes the VGG [67] feature extractor. Iori and Igen represent the original image and

the generated image, respectively.

In summary, the final loss function of the generator is:

LG = LGadv
+ Lper (3.16)
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The loss function of the discriminator only includes the adversarial loss, and the

specific equation is as follows:

LD = −1

2
[
∑

Iori∼Pdata
logD(Iori) +

∑
Igen∼PG

log(1−D(Igen))]

−1

2
[
∑

Iori∼Pdata
logD(Iori, s) +

∑
Igen∼PG

log(1−D(Igen, s))]

(3.17)

Pdata and PG denote the distribution of the original images and generated images,

respectively. The first term is used to judge the authenticity of the original image

(Iori) and the generated image (Igen), and the second term is used to evaluate whether

the original and generated images and text match.

3.4.3 Implementation Details

During training, we use ADAM optimization [38] to train 600 epochs for the CUB and

Oxford-102 datasets, and 120 for the MS COCO dataset. The initial learning rate is

set to 0.0002, and the batch size is set to 10. For image and text encoders, we use a

pre-trained image encoder [31] and text encoder [30] to extract corresponding image

and text features.

Besides, referring to the work of LightweightGAN [70], we lightweight our designed

model. Specifically, we remove the second group of attention, ACM, and residual

modules in Figure 3.13 and only keep the upsampling operation.

3.4.4 Experiments

Qualitative results

Figure 3.14 presents the qualitative comparison results between our method and exist-

ing T2I methods. It can be found that the bird results and the complex image results

synthesized by the existing T2I methods are poor. The flower results they synthesized

are pretty on the whole, but they are still insufficient in detail synthesis, and they can-

not effectively control the shape and position information of the synthesized results.
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a zebra grazing
on grass in an

open field

the four images
show dinner
plates with

different dishes
in them

this flower has a
lot of tall pointy
red petals and a
middle full of
yellow stamen

this bird is
almost entirely
blue with only
small streaks of

black on its
wings

DMGAN

DrawGAN

Ours

Input 
text

Input 
contour

Figure 3.14: The subjective comparison results between our method with existing T2I
methods are shown above.

this small bird has
yellow breast with
white point on its
beautiful wings

the petals of the flower
are yellow in color

Manual text Manual contour Customizable
GAN Ours

A pizza with sauce,
onion,and cheese on a

plate

A zebra stands in the
grass

Figure 3.15: The subjective comparison results between our method with Customiz-
ableGAN are shown above.
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Table 3.5: The MS-SSIM, SSIM, and FSIM comparison results of our method and ex-
isting T2I methods are shown below. ‘lw’ in the table means our lightweight structure.

Datasets Metrics AttnGAN [6] DMGAN [10] DrawGAN [62] INS fore [71] Ours Ours (lw)

CUB
MS-SSIM 0.10 0.09 0.09 0.10 0.19 0.21
SSIM 0.26 0.21 0.23 0.25 0.28 0.31
FSIM 0.59 0.56 0.58 0.58 0.60 0.62

Oxford-102
MS-SSIM 0.10 0.09 0.09 0.08 0.26 0.27
SSIM 0.20 0.15 0.16 0.15 0.25 0.21
FSIM 0.61 0.58 0.59 0.57 0.66 0.63

MS COCO
MS-SSIM 0.08 0.08 0.08 0.09 0.14 0.13
SSIM 0.18 0.17 0.16 0.16 0.20 0.18
FSIM 0.56 0.56 0.56 0.56 0.59 0.57

In contrast, our method is able to synthesize highly realistic image results while being

consistent with the basic information of text and contour. Especially in complex image

synthesis, the results synthesized by our method are subjectively very realistic, while

the authenticity of the synthesis results of existing T2I methods is very poor.

Figure 3.15 shows the comparison results of our method and CustomizableGAN.

The text and contour information in the figures are inputted manually. Among the

synthetic results of birds and flowers, the results synthesized by our method have signif-

icantly better clarity and realism, and our synthesized results are more conform to the

input contour information. Furthermore, our method is able to synthesize correspond-

ing high-quality complex image results based on the manual input text and complex

contour, which demonstrates the generality of our proposed method.

Quantitative results

Evaluation Method. In addition to traditional evaluation methods (IS and FID),

Multi-Scale Structural SIMilarity (MS-SSIM) [72], Structural SIMilarity (SSIM), Fea-

ture Similarity Index Measure (FSIM) [73] are also employed to evaluate our method

quantitatively. The lower the value of FID, the better the result. Other methods are

that the higher the value, the better the result.

Table 3.5 shows the comparison of our method with existing T2I methods on MS-

SSIM, SSIM, and FSIM. The comparative results show that our method performs the

best. This shows that the structural similarity between the results of our method and
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Table 3.6: The IS and FID comparison results of our method, existing T2I methods,
and CustomizableGAN are shown below.

Model
CUB Oxford-102 MS COCO

IS ↑ FID ↓ IS ↑ FID ↓ IS ↑ FID ↓
AttnGAN [6] 4.36 23.98 3.75 37.94 25.89 35.49
DMGAN [10] 4.75 16.09 4.03 21.36 30.49 32.64
TIME [74] 4.91 14.30 - - 30.85 31.14
DFGAN [75] 5.10 14.81 - - - 19.31
DrawGAN 4.76 9.87 4.07 20.24 31.11 31.51
INS fore 4.79 9.29 4.19 18.98 30.70 29.55

EruditeGAN 4.69 9.58 4.07 17.69 31.94 28.79

CustomizableGAN 3.12 65.36 2.76 78.84 7.83 91.26

Ours 4.64 10.98 5.03 27.21 24.48 19.07
Ours (lw) 4.77 11.95 5.00 29.88 21.44 25.82

real images is the closest, indicating that our synthetic results have the best realism.

Table 3.6 shows the quantitative comparison results on IS and FID. Compared to

CustomizableGAN, our results are better, which shows that our method can synthesize

better image results based on text and contour information. Moreover, the performance

of our method is also competitive compared to the T2I methods.

Tables 3.5 and 3.6 also show the comparison between our designed structure and

the lightweight structure. The results between them are relatively close. In terms of

parameters, the model parameters are reduced by 50.3% (from 31.8M to 15.8M) in the

CUB and Oxford-102 datasets. In the MS COCO dataset, it is reduced by 36.8% (from

47.6M to 30.1M), which reflects the effectiveness of our lightweight work.

3.5 Internal Comparison of Proposed Methods

In order to improve the controllability of image synthesis, we have proposed two meth-

ods: Customizable GAN: a method for image synthesis of human controllable; TCGIS:

Text and Contour Guided Artificially Controllable Image Synthesis, respectively ex-

pressed as CustomizableGAN, TCGIS.

The basic idea of the two methods we propose is to synthesize corresponding image

results based on text and contour information, and both text and contour can be

85



manually input. Therefore, our proposed methods make the whole image synthesis

process well human-controllable and achieve the objective of improving controllability.

The qualitative and quantitative comparison results of CustomizableGAN and

TCGIS are shown in Figure 3.15 and Table 3.6. Judging from the synthesis results,

the two methods we proposed both achieve better human-controllable image synthesis

effects. In contrast, the synthesis quality of TCGIS is significantly better than that

of CustomizableGAN, which indicates that the structure design of TCGIS is more

efficient. In addition, TCGIS has demonstrated excellent performance in complex

image synthesis, and the synthesis effect is better than the current T2I methods,

which shows that TCGIS initially has good applicability.

3.6 Chapter Conclusion

In this chapter, we propose two methods (CustomizableGAN, and TCGIS) to improve

the controllability of image synthesis. We conduct a detailed introduction for each

proposed method, including network structure, loss function, implementation details,

and experiments.

Extensive experimental results show that our proposed method can well promote

the controllability of image synthesis. Besides, the TCGIS method shows excellent

performance in image synthesis quality. Especially for complex image synthesis, it can

synthesize very realistic image results. Combined with its own human controllability,

it can be said that this method already has certain applicability.

In the next chapter, we will introduce the high practicality oriented image synthesis

methods.
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Chapter 4

High Practicality Oriented Image

Synthesis Methods

4.1 Introduction

In Chapters 2 and 3, we introduce our proposed high quality oriented and high con-

trollability oriented image synthesis methods, respectively. These methods have better

solved the problems of insufficient synthesis quality and controllability existing in the

current T2I method. However, the practicability of these proposed methods is still

relatively modest. Although the TCGIS method proposed in Chapter 3 is practical to

a certain extent, it is far from enough.

To further improve the practicality of image synthesis methods, we introduce text-

guided image manipulation methods. Specifically, for previously synthesized image

results, its content can be modified using text information. In this way, by combining

the previously proposed image synthesis method with the proposed text-guided image

manipulation method, a high practicality image synthesis approach is obtained.

Therefore, in this Chapter, we first introduce our proposed text-guided image ma-

nipulation (TGIM) method. And then show the experimental results of the high prac-

ticality image synthesis formed by introducing the proposed TGIM method into the

previously proposed image synthesis methods. Specifically, it includes two parts: text-

guided image synthesis and manipulation (text-guided image synthesis method com-

bined with text-guided image manipulation method); text-guided controllable image

synthesis and manipulation (text- and contour-guided image synthesis method com-

bined with text-guided image manipulation method).
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4.2 Related Works

Image manipulation has attracted much attention in the computer vision community

because of its many potential applications, such as computer-aided design, image edit-

ing, and computer games.

It aims to modify the content of the given image with different granularity, including

low-level color [76] and texture [77] information and high-level semantic information

[78] to meet the various preferences of users. In recent years, with the rise of artificial

intelligence, especially the introduction of deep learning, the research of image manipu-

lation has entered the automatic image manipulation stage, including style conversion

[79][80], image inpainting [81][82], image translation [83][84], and image colorization

[76][85].

Despite the fact that many recent studies on image manipulation have produced

remarkable outcomes, the majority of them are narrowly focused and lack flexibility.

In response to this problem, a new type of image manipulation method—text-guided

image manipulation—is developed. In this way, natural language description is used to

modify the image content so that the entire image manipulation task has good flexibil-

ity. On the other hand, natural language description conforms to human input habits,

which can accelerate the development of image manipulation toward user-friendly ap-

plications. The existing text-based image manipulation methods [24][86][69][70][87]

have been able to modify some parts of the image according to the input text de-

scription and have achieved encouraging results. Nevertheless, some methods [24][86]

are not satisfactory in terms of modification effect. Meanwhile, some other methods

[69][70][87] have certain flaws in the whole modification process so that the modifica-

tion effect still has a large room for improvement. Specifically, they only use sentence

information in the initial modification stage and only use fixed word information to

fine-tune the modification content in the later modification stage.
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crown on its head
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Figure 4.1: The comparison results with other text-guided image manipulation methods
are shown above. In contrast, the image results manipulated by our method are clearer
and more conform to the semantic information of the input text.

4.3 Text-guided Image Manipulation based on

Sentence-aware and Word-aware Network

In order to achieve a better text-guided image manipulation effect, we propose a

sentence-aware and word-aware network (SWN). In our proposed SWN, there is a

sentence-aware (SA) and a word-aware (WA) approach. The sentence-aware method

refers to the fusion of sentence features during feature processing so that the final ma-

nipulated image result is more consistent with the input text information. The word-

aware method refers to utilizing the attention mechanism (specifically, we employ the

dynamic selection method [10]) to use word information to fine-tune the results of ma-

nipulating images to further improve image quality. Fig. 4.1 shows that our method

has made a significant improvement in image manipulation.

4.3.1 Network Structure

Fig. 4.2 shows the specific network structure of our proposed method. For the in-

put image and text description, the corresponding image features and text features

are extracted through a pre-trained image encoder [31] and a pre-trained text encoder

[30], respectively. The text features include global sentence features and local word
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Figure 4.2: The network architecture of our proposed method is shown above. By using
global sentence information and dynamically adjusted word information in SWN, we
finally obtain high-quality image manipulation result that conforms to the semantics
of the input text.
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Figure 4.3: The specific processing process of the sentence-aware and word-aware net-
work (SWN) is shown above. ‘⊕’ represents the element-wise addition operation.

features. At first, the image features are combined with the global sentence features,

and then the initially hidden features are generated through continuous up-sampling

operations. After that, the hidden features will be further fused with image features

and text features (including global sentence features and local word features) through

the sentence-aware and word-aware network (SWN). Then, new hidden features will be

generated through residual blocks [37] and up-sampling operations. This process con-

tinues until the third time when the features generated by SWN are directly input into

the detail correction module (DCM) to obtain the final hidden features and synthesize

the corresponding image manipulation result.
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Figure 4.4: The basic processing procedures of affine combination module (ACM) and
detail correction module (DCM) are shown in the figure above. ⊗ represents the
Hadamard product operation.

Proposed SWN

The specific structure of SWN is shown in Fig. 4.3. Hidden features and local word

features are first used by the dynamic selection method [10] to select the most relevant

word features. The specific content of the dynamic selection method has shown in

Eq. 2.18-2.23. After obtaining the selected word features, they will be fused with the

input hidden features and global sentence features in turn. Then the fused features

and the input image features are further fused through an affine combination module

(ACM) operation and then input into the subsequent network. Different from the

feature fusion design of existing works [69][70], the core of our proposed SWN is to use

the dynamic selection method to fuse word features and further fuse sentence features,

where word information can fine-tune the manipulation results to further improve the

quality, while sentence information provides global text semantic information so that it

can improve the semantic consistency between the manipulation result and the input

text.
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ACM & DCM

ACM and DCM are proposed by ManiGAN [69], they can provide better feature pro-

cessing results to achieve higher-quality image manipulation results. Therefore, refer-

ring to ManiGAN, we have followed the ACM and DCM proposed by ManiGAN in our

designed structure. The specific contents of ACM and DCM are shown as follows:

The affine combination module (ACM) is used to associate the cross-modal

representations. It contains two inputs, one is the image regional features fea I ∈

R256×17×17, and the other is the hidden features h ∈ RC×H×W , where C is the number

of channels, H and W are the height and width of feature map, respectively. The

regional features are sampled and input into two convolutional layers to generate a

weight matrix W and a bias matrix b, which are then combined with hidden features

to form the final new hidden features. The specific equation is as follows:

hnew = h⊗W (fea I) + b(fea I) (4.1)

where ⊗ represents the Hadamard product operation.

The detail correction module (DCM) is used to realize more fine-grained image

modification. As shown on the right side of Fig. 4.4, its input includes three parts:

the previously hidden features, the input text features (including sentence features and

word features), and the input image features (obtained after the VGG network [67] and

the up-sampling operation). Firstly, the hidden features and text features are combined

through SWN to form new hidden features. Afterward, the new hidden features and

image features are combined through ACM, then processed through residual operations.

The processed features will be merged with the image features through ACM to form

the final hidden features.
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4.3.2 Loss Function

We follow the objective function of ControlGAN [26] for training the generator and

discriminator. Besides, we add a reconstruction term in the generator as follows:

Lrec = 1− 1

CHW

∥∥∥I ′ − I
∥∥∥ (4.2)

where C, H, and W respectively represent the number of channels, height, and width

of the image. I denotes the real image, and I
′
denotes the image result modified

by our proposed method. Reconstruction loss can be used to improve the diversity

of modification results. This item will produce a significant penalty value when the

modification result is the same as the input image.

4.3.3 Implementation Details

During training, one convolutional layer and one InstanceNorm operation [88] are used

in up-sampling, and two convolutional layers and two InstanceNorm operations are

used in the residual block. We train our models using Adam optimizer [38] with an

initial learning rate of 0.0002 and a batch size of 10. Empirically, we train 600 epochs

before the DCM stage and 800 epochs in the DCM stage for the CUB, Oxford-102

flower datasets, and 200 epochs before the DCM stage and 200 epochs in the DCM

stage for the MS COCO dataset. Besides, we use a pre-trained image encoder [31] and

text encoder [30] to obtain the corresponding image and text features.

4.3.4 Experiments

Qualitative comparison

The result of the qualitative comparison between our proposed method and the current

existing text-guided image manipulation methods on the CUB dataset is shown in Fig.
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Figure 4.5: The comparison between our method and other existing methods on the
CUB dataset is shown above. It shows that our modified details are more refined than
other methods.
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Figure 4.6: The comparison between our method and other existing methods on the
Oxford-102 flower dataset is shown above. The comparison results show that our
method has achieved an excellent modification effect for flower images.
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Figure 4.7: The comparison between our method and other existing methods on the
MS COCO dataset is shown above.

4.5. In contrast, the overall quality of the results of SISGAN [24] and TAGAN [86] is

relatively poor. Especially for SISGAN, the subjective authenticity of its manipulation

results is lacking. By contrast, TAGAN’s results are more realistic subjectively, but

the overall resolution and specific detail processing are not surprisingly good. The ma-

nipulation results corresponding to ManiGAN [69] shown in the figure are better than

TAGAN in terms of authenticity and detail processing. At the same time, the results

of ManiGAN are more conform with the semantic information of the input text than

the results of TAGAN. Compared with the above methods, the manipulation results

generated by our method are the best in terms of authenticity, detail processing, and

semantic consistency with the text. Compared with ManiGAN, which has better per-

formance, our results are better in detail processing and more conform to the semantic

information of the text (such as the results in the first and second columns).

The comparison results on the Oxford-102 flower dataset are shown in Fig. 4.6.

It is obvious from the comparison results that our method has achieved excellent ma-

nipulation effects in flower images. Our method is far superior in terms of subjective

authenticity, detail processing, and semantic consistency than SISGAN and TAGAN.

The comparison results on the MS COCO dataset are shown in Fig. 4.7. It is obvi-

ous from the comparison results that our method has achieved excellent manipulation
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effects in flower images. Our method is far superior in terms of subjective authenticity,

detail processing, and semantic consistency than SISGAN and TAGAN.

It can be found that the manipulation effect of ManiGAN is sometimes very

mediocre (no manipulation effect is achieved), and sometimes excessive (the fore-

ground content is also greatly manipulated). And the manipulation effect of

LightweightGAN is relatively slight overall. In contrast, the manipulation effects of

our proposed method are most appropriate.

Table 4.1: The quantitative comparison results of our method and other existing meth-
ods on the CUB dataset are shown below.

Method IS FID NIMA
SISGAN [24] 2.24 104.27 2.81
TAGAN [86] 3.32 57.20 3.48
SAGAN [87] 4.55 - 4.26
ManiGAN [69] 8.47 13.85 4.84

LightweightGAN [70] 9.02 11.02 4.95
Our 11.69 10.75 5.05

Quantitative comparison

We quantify the performance of the proposed method according to Inception Score (IS)

[13], FID [35], and Neural Image Assessment (NIMA) [89]. NIMA is a quantitative

evaluation material that is more conforms to human subjective evaluation, that is, the

scoring of images by this metric conforms to the subjective perception of humans. The

higher value of NIMA, the better the human perception of the image, that is, the higher

image authenticity.

Table 4.2: The quantitative comparison results of our method and other existing meth-
ods on the Oxford-102 flower dataset are shown below.

Method IS FID NIMA
SISGAN [24] 3.33 108.35 3.77
TAGAN [86] 3.88 55.16 4.74

Our 9.56 30.33 4.96
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Table 4.3: The quantitative comparison results of our method and other existing meth-
ods on the MS COCO dataset are shown below.

Method IS FID NIMA
ManiGAN [69] 15.09 25.09 5.09

LightweightgAN [70] 28.58 12.39 5.90
Our 29.69 8.62 5.93

The quantitative comparison results on the CUB dataset are shown in Table 4.1. In

terms of Inception Score, our method is 421% higher than SISGAN [24], 252% higher

than TAGAN [86], 156% higher than SAGAN [87], 38.0% higher than ManiGAN [69],

29.6% higher than LightweightGAN [70], which demonstrates the image manipulation

performance by our method is the best according to image quality and diversity. In

terms of NIMA, the scores of [69]-[87] all exceed 4, which reflects that these methods

are more realistic in human subjective evaluation.

The quantitative comparison results on the Oxford-102 flower dataset are shown

in Table 4.2. In terms of Inception Score, our method is 187% higher than SISGAN

and 146% higher than TAGAN, which echoes the qualitative results, indicating that

our method has an excellent performance in flower image manipulation. In terms of

NIMA, our method is also the best.

The quantitative comparison results on the MS COCO dataset are shown in Table

4.3. In terms of Inception Score, our method is 96.7% higher than ManiGAN and 3.9%

higher than LightweightGAN, indicating that our method performs better in complex

image manipulation. In terms of NIMA, our method is also the best than ManiGAN

and LightweightGAN.

Ablation study

In this section, we conduct an ablation study to verify the effectiveness of Sentence-

Aware (SA) and Word-Aware (WA) in our proposed SWN. Ablation models

with/without SA and WA are trained and evaluated in the same condition. The

results are shown in Table 4.4. Experimental results show the effectiveness of each
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Table 4.4: The ablation comparison results of our proposed SWN are shown below.
SA indicates the use of the sentence-aware method, and WA indicates the use of the
word-aware method. ✓ and ‘-’ indicate that the corresponding methods are used and
not used.

CUB Oxford-102 MS COCO
SA WA IS FID NIMA IS FID NIMA IS FID NIMA
✓ - 10.49 12.23 4.94 9.17 32.84 4.88 28.91 9.68 5.85
- ✓ 11.27 11.31 5.03 9.41 32.60 4.94 29.08 8.98 5.90
✓ ✓ 11.69 10.75 5.05 9.56 30.33 4.96 29.68 8.62 5.93

technique in improving IS, FID, and NIMA scores. Eventually, the best performance

is obtained when they are applied together, proving the effectiveness and superiority

after integrating two improvements.

4.4 Image Synthesis Methods with High Practical-

ity

In order to achieve a highly practical image synthesis method, we introduced the

proposed text-guided image manipulation method into the previously proposed T2I

method and TCGIS method to form two highly practical image synthesis methods:

Text-guided Image Synthesis and Manipulation; Text-guided Controllable Image Syn-

thesis and Manipulation.

4.4.1 Text-guided Image Synthesis and Manipulation

The basic way of text-guided image synthesis and manipulation is to first synthesize the

corresponding image results based on text information, and then continue to input new

text to modify the previously synthesized image until a satisfactory result is generated.

The corresponding results are shown in Fig. 4.8. The figure shows that based on

the input text, the corresponding image results are first synthesized. Then, for the

synthesized image result, the new text can continue to enter to modify the content of
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Figure 4.8: The corresponding results of text-guided image synthesis and manipulation
are shown above.

the image.

We can find that in the initial stage of text-to-image synthesis, multiple correspond-

ing image results can be synthesized based on the text description. This is mainly

because the text information can only determine the basic content of the synthesized

image but cannot determine the shape and position information of the synthesized ob-

ject. This situation makes the method of text-guided image synthesis and manipulation

still have room for improvement in terms of human controllability and practicability

of the synthesis method.
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Figure 4.9: The corresponding results of text-guided controllable image synthesis and
manipulation are shown above.

4.4.2 Text-guided Controllable Image Synthesis and Manipu-

lation

The basic way of text-guided image synthesis and manipulation is to first synthesize the

corresponding image results based on text and contour information, and then continue

to input new text to modify the previously synthesized image until a satisfactory result

is generated. The corresponding results are shown in Fig. 4.9. The figure shows that

based on the input text and contour information, the corresponding image result is

synthesized first. Afterward, new text can continue to be entered to manipulate the

previously synthesized image content.

We can find that in the initial stage, the text information can control the basic syn-

thetic content, the contour information can control the shape and position information

of the synthetic object, and the new text can be used to modify the content of the

synthetic image in the later stage. The whole process is all artificially controllable and

has better practicability.
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4.5 Chapter Conclusion

In this chapter, we first propose a TGIM method — Text-guided Image Manipulation

based on Sentence-aware andWord-aware Network. We conduct a detailed introduction

for our proposed method, including network structure, loss function, implementation

details, and experiments. Experimental results show that our proposed method can

achieve the image content manipulation effect well.

After that, we combined the proposed TGIM method with the previously proposed

T2I and TCGIS methods to form two image synthesis methods with high practical-

ity: text-guided image synthesis and manipulation and text-guided controllable image

synthesis and manipulation. Judging from the synthesis process and results, the text-

guided image synthesis and manipulation method has achieved good practicability.

However, since it cannot control the shape and position information of the synthesized

object at the beginning, there is still room for improvement in the practicality of this

method. In contrast, the text-guided controllable image synthesis and manipulation

method can control the basic content of the synthesized image and the position and

shape information of the synthesized object at the beginning, making the method re-

alizes the content controllability of the whole process and thus has better practicality.

In the next section, we will summarize the research work and give conclusions.
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Chapter 5

Conclusion

In this work, deep learning approaches for text-guided artificially controllable image

synthesis have been introduced. This dissertation is mainly dedicated to solving the

three problems (insufficient quality, insufficient controllability, and insufficient practi-

cability) existing in the current text-to-image synthesis methods. The main proposal

consists of three parts: High quality oriented text-to-image synthesis, high controlla-

bility oriented image synthesis, and high practicality oriented image synthesis.

In the part of high quality oriented text-to-image synthesis, we propose three text-

to-image synthesis methods in total, specifically DrawGAN: Text to Image Synthe-

sis with Drawing Generative Adversarial Networks (aka. DrawGAN), Text-to-Image

Synthesis: Starting Composite from the Foreground Content (aka. INS fore), and ext

to Image Synthesis with Erudite Generative Adversarial Networks (aka. EruditeGAN).

Among them, DrawGAN achieves higher-quality image results by simulating the paint-

ing process. Specifically, it first synthesizes simple contour result based on text, then

synthesizes foreground content, and then synthesizes the final image result. The whole

synthesis process is from simple to complex, just like painting step by step. The basic

idea of INS fore is to first synthesize the corresponding foreground content based on the

text, and then synthesize the final image result. Compared with DrawGAN, directly

synthesizing the foreground content that matches the text information is simpler and

more effective than first synthesizing the contour information that is not closely related

to the text information. Therefore, INS fore can achieve higher-quality image results.

For EruditeGAN, it takes a roundabout way to achieve higher-quality image synthesis

results. Specifically, it promotes the generation ability of the generator by improving

the discrimination ability of the discriminator. To improve the discriminative ability
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of discriminator, we introduce various additional discriminative image types into the

discriminator to improve its discriminative ability. Overall, all three of our proposed

methods achieve better quality image synthesis results. In contrast, the synthesis qual-

ity of INS fore and EruditeGAN is better than DrawGAN, and EruditeGAN performs

better in complex image synthesis.

In the part of high controllability oriented image synthesis, we propose two methods

in total, specifically Customizable GAN: a method for image synthesis of human con-

trollable (aka. CustomizableGAN), and TCGIS: Text and Contour Guided artificially

controllable Image Synthesis (aka. TCGIS). The basic idea of CustomizableGAN is

to synthesize the corresponding image result based on text and contour information,

where text information is used to determine the basic content of synthesis, and contour

information is used to determine the shape and position of the synthesized object. The

specific implementation method is first to use the encoder to extract the correspond-

ing text features and contour features, then combine the text and contour features,

and then generate the corresponding image result after the residual and upsampling

operations. CustomizableGAN initially realizes the controllable image synthesis effect,

which allows artificial input of text and contour, so it has good artificial controllability.

For TCGIS, it designs a more effective network structure based on the realization idea

of CustomizableGAN. Specifically, the attention mechanism is introduced to fine-tune

the synthesis result to improve its quality. In contrast, TCGIS achieves higher-quality

controllable image synthesis results, and it demonstrates unparalleled performance in

artificially controllable complex image synthesis.

In the part of high practicality oriented image synthesis, we first propose a text-

guided image manipulation method, and then compare this method with the previously

proposed T2I and TCGIS methods to form the high practicality image synthesis meth-

ods. Specifically, the proposed text-guided image manipulation method is Text-guided

Image Manipulation based on Sentence-aware and Word-aware Network (aka. SWN).
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The basic idea of SWN is to deeply integrate the hidden features of synthetic content,

image features, sentence features, and word features to achieve a better image manip-

ulation effect. The proposed TGIM method is combined with the previously proposed

T2I and TCGIS methods to form a total of two highly practical methods: Text-guided

image synthesis and manipulation, and Text-guided controllable image synthesis and

manipulation. Text-guided Image Synthesis and Manipulation can first synthesize the

corresponding image based on the text description, then modify the image’s content

based on the new text. For text-guided controllable image synthesis and manipulation,

it can first synthesize the image result based on the text and contour information, then

modify the generated image’s content based on the new text. Both methods have good

practicability. In contrast, the second method achieves the content controllable for the

whole process, so it has better practicability.

In summary, this paper realizes the research on image synthesis methods with

high quality, high controllability, and high practicability, which can well promote the

development of image synthesis towards industrial application.

Although our proposed methods achieve high quality, high controllability, and high

practicability image synthesis, from the results shown, our proposed methods still have

some limitations. Firstly, in terms of image synthesis quality, our proposed methods

achieve higher-quality image synthesis results. However, on complex image synthesis,

we found that the performance of the proposed methods is relatively general, which

indicates that there is still room for improvement in the synthesis quality of our pro-

posed methods. Secondly, the high controllability image synthesis methods we proposed

achieve better control degree over the synthetic content, but from the results shown

(Figures 3.4-3.10), our proposed methods cannot control the background content, which

makes the overall controllability still have room for improvement. Furthermore, our

proposed methods cannot synthesize the realistic image result when the input contour

content is not real. Thirdly, in terms of practicability, the text-guided image manipula-
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tion method we proposed is still lacking in manipulation functions (such as the ability

to manipulate image style), which indicates that there is still room for improvement in

the practicability of our proposed method.

For the above limitations, in the future, we will design more effective network struc-

tures for complex image synthesis to improve the quality of complex image synthesis.

Besides, we will add a separate background generation module and contour content

modification module to the proposed high-controllability image synthesis methods to

further improve the overall controllability. Furthermore, we will design a more effective

and practicability text-guided image manipulation method, which can achieve diverse

manipulation functions, such as converting the image content into cartoons, oil paint-

ings, etc., adding related objects to the image content, and so on. In this way, the image

synthesis method formed by fusing the new TGIM method with the T2I and TCGIS

methods will have higher practicability. In addition to the above research content, we

will also be committed to researching lightweight network structures in the future, and

lightening the models of our proposed method so that the models we develop can be

applied to specific devices, such as cameras, mobile phones, etc. In this way, the overall

practicality can be further improved.
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List of Abbreviations

GAN Generative Adversarial Netowrks

T2I Text-to-Image Synthesis

TGIM Text-Guided Image Manipulation

cGAN Conditional Generative Adversarial Networks

VAE Variational Autoencoders

DCGAN Deep Convolution Generative Adversarial Netowrks

CNN Convolutional Neural Networks

DAMSM Deep Attentional Multimodal Similarity Model

BiLSTM Bidirectional Long Shore-Term Memor

IS Inception Score

CS Fréchet Inception Distance

DrawGAN: Drawing Generative Adversarial Networks

BN Batch Normalization

SpectralNorm Spectral Normalization

leaky ReLU Rectified Linear Unit

FC Fully Connected

EruditeGAN Erudite Generative Adversarial Network

CA Conditional Augmentation

GAWWN Generative Adversarial What-Where Network

DRAW Deep Recurrent Attention Writer

VGG Visual Geometry Group

HR Human Rank

kp key point

bb bounding box

ACM Affine Combination Module
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MS-SSIM Multi-Scale Structural SIMilarity

SSIM Structural SIMilarity

FSIM Feature Similarity Index Measure

TCGIS Text and Contour Guided Image Synthesis

SWN Sentence-aware and Word-aware Network

RNN Recurrent Neural Networks

DCM Detail Correction Module

NIMA Neural Image Assessmen
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