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Abstract

This paper provides an equation called the pricing kernel equation, which relates the
subjective probability distribution on an arbitrary asset price to the risk-neutral probabil-
ity distribution. It claims that the subjective probability distribution is priced by a static
option portfolio, in which the weight of an option is determined by the level of the pricing
kernel. As an application, we propose a new method for estimating empirical pricing ker-
nels. Another application is to extract subjective probabilities and fundamental statistics
from option prices. These examples show that the pricing kernel equation can be a versatile
tool for various applications.
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1 Introduction

Due to the progress of modern finance theory, the principle of asset pricing has been established
in a rigorous manner. The price of an asset in equilibrium is evaluated as the expected value of
its payout multiplied by a pricing kernel. More precisely, the expected value is taken not under
an objective probability measure, but under a subjective probability measure associated with
a market consensus. Although the pricing kernel also known as the stochastic discount factor
or the state-price density plays a central role in asset pricing, it is not so easy to specify its
explicit form adequately. Another asset pricing formula states that the asset price equals the
risk-neutral expected value of its payout discounted by a risk-free interest rate. As a matter of
course, the former is equivalent to the later in theory.

The objective of this paper is to have a rethink about the relation among three building
blocks; the subjective probability distribution, the risk-neutral probability distribution, and the
pricing kernel. The relation has already been well recognized as an equation that the pricing
kernel equals the likelihood ratio of the risk-neutral probability to the subjective probability
discounted by a risk-free interest rate. It is important for us to become conscious of the fact
that the likelihood ratio is usually written as a form in terms of probability density functions.
One question of this paper is how to represent the relation in terms of cumulative distribution
functions as a general formula. The derived representation called the pricing kernel equation
is expected to be more fruitful than the already known representation of the pricing kernel.
Another question is how to describe subjective fundamental statistics, including mean, standard
deviation, skewness, and kurtosis of the subjective probability distribution, by being estimated
from observed market data and a given pricing kernel. We also explore a new general formulation
of the pricing kernel. Moreover, we suggest some applications of the pricing kernel equation.

For this purpose, we begin with the projection of the pricing kernel onto the price of a target
asset and then consider its reciprocal, which is called the reciprocal kernel. It is a convenient
expression to relate the subjective probability distribution on the asset price to the risk-neutral
one. Applying the reciprocal kernel to a static replication strategy, we derive the pricing kernel
equation that is a fundamental formula for any pricing kernels. This formula is represented
as an integro-differential equation satisfying the reciprocal kernel. The pricing kernel equation
describes the explicit linkage between the subjective and the risk-neutral cumulative distribution
functions. It claims that the subjective cumulative distribution function is priced by a static
option portfolio consisted of a digital put option and a series of plain vanilla put options written
on the asset. The weight of a put option in the static portfolio is determined by the level of the
reciprocal kernel or its differentiation. It is also proved that a general solution to the pricing
kernel equation exits under some conditions.

Our approach to derive the pricing kernel equation is a static replication argument by an
option portfolio to quote the subjective probability distribution as a price. Static replication
strategies composed of available options in markets have been an accepted approach in both
academia and practice. For example, Takahashi & Yamazaki (2009a, 2009b), Ohsaki & Ya-
mazaki (2011), and Carr & Wu (2014) replicated long-term options or defaultable bonds by a
static portfolio of plain vanilla options. It is well known that variance swaps or their subspecies
can be replicated by a static option portfolio combined with dynamic trading of an underlying
asset. For specific information, see Carr & Madan (1998), Demeterfi et al. (1999), Carr & Lewis
(2004), Schoutens (2005), and Takahashi et al. (2011), among others. Bakshi et al. (2003) and
Martin (2017) exploited ingenious estimation methods for fundamental statistics of asset prices
by static replication strategies. By contrast, this paper applies such a static replication strat-
egy to derive the fundamental principle of asset pricing. However, we acknowledge that the
conception of the pricing kernel equation is considerably inspired by these previous studies.

As an application of the pricing kernel equation, we suggest a new estimation method of



empirical pricing kernels. As regards theoretical research, Lucas (1978) documented the concept
of the pricing kernel as a marginal utility form, which is a monotonically decreasing function
of aggregate consumption. Thereafter, it has been assumed to have such a form of the pricing
kernel in the standard theory of asset pricing. In contrast, Ait-Sahalia & Lo (2000), Jackwerth
(2000), and Rosenberg & Engle (2002), among others discovered that empirical pricing kernels
are not monotonically decreasing in the underlying state variable, but have some increasing
region. More precisely, the empirical pricing kernels depict U-shaped or tilde-shaped curves.
This inconsistency is known as the pricing kernel puzzle. Recent empirical analysis, including
Fengler & Hin (2015) and Song & Xiu (2016), reaches the same conclusion. To resolve the
pricing kernel puzzle, Bakshi et al. (2010), Christoffersen et al. (2013), and Yamazaki (2018)
exploited asset pricing models equipped with U-shaped pricing kernels. Cuesdeanu & Jackwerth
(2018) demonstrated that the ambiguity aversion model of Klibanoff et al. (2005) naturally
generates a tilde-shaped pricing kernel. In previous empirical research, an empirical distribution
based on historical returns of a stock index has been identified with the subjective probability
distribution. This paper provides a simulation test for empirical pricing kernel estimation in
which a plausible projected pricing kernel function is given beforehand. Given a series of stock
index returns generated by a Monte Carlo simulation and an implied volatility curve, we first
estimate both empirical and risk-neutral cumulative distribution functions. And then plugging
the two distribution functions into the pricing kernel equation, we estimate the shape of the
pricing kernel function. The simulation test verifies the advantages of the estimation method
based on the pricing kernel equation in comparison with a standard estimation method. As a
by-product, it is demonstrated that empirical pricing kernels are essentially uncertain as long as
a data set available in practice are used for. Notably, empirical results reporting that oscillating
pricing kernels are observed are dubious.

Another application is to extract the subjective probability distribution. Tversky & Kahne-
man (1992) focused on the discrimination between subjective and objective probabilities in the
cumulative prospect theory, which is a modified version of the prospective theory of Kahneman
& Tversky (1979). In the theory, the probability weighting function characterizes the distortion
of subjective probabilities to objective ones. A large number of experimental research, including
Tversky & Kahneman (1992), Wu & Gonzalez (1996), Prelec (1998), Berns et al. (2007), and
Polkovnichenko & Zhao (2013), supported the existence of the probability weighting function
and reported that subjective probabilities are definitely different from objective ones. Taking
the empirical results, Barberis & Huang (2008) and Yamazaki (2019) incorporated the proba-
bility weighting function into asset pricing models to explain negative average returns on IPO
stocks and financially distressed stocks, respectively. This paper provides a numerical exam-
ple for extracting the subjective probability distribution from observed option prices. We first
develop the functional form of the reciprocal kernel consistent with the hyperbolic absolute
risk aversion utility. Subsequently, we try to estimate subjective probabilities and subjective
fundamental statistics from an implied volatility curve given beforehand. In general, in order
to obtain the pricing kernel associated with a utility function, one has to know subjective prob-
abilities in advance and then to solve a consumption-investment problem under the subjective
probabilities. By contrast, we do not have to do so in this application. What we have to do
is to construct a simple static option portfolio in order to determine the reciprocal kernel and
to input it into the pricing kernel equation. This is the reason why the subjective probability
distribution can be restored from observed option prices and a given utility function.

The remainder of this paper proceeds as follows. Section 2 describes a preliminary example
to make our objectives clear. Section 3 provides the pricing kernel equation and solves it. Section
4 shows the simulation test for verifying empirical pricing kernels. In Section 5, we discuss the
reciprocal kernel and its applications. Section 6 presents the numerical example that estimates



subjective probability distributions. Section 7 concludes. Further, the Appendices contain some
technical supplements and detailed discussion.

2 A Preliminary Example

First of all, consider a simple one-period consumption-investment problem with a representative
investor as an example to motivate the following sections. Let W; and C be his/her wealth and
consumption at date ¢ € {0,T}, respectively. Suppose that the investor can choose to invest
in M different risky assets. Let S,, o be the price per share of asset m € {1,..., M} at date
0 and S,, r be the random payoff of asset m at date T. Define the gross return on asset m
as Ry, := Spm,1/Sm,0- It is assumed that the investor does not receive any labor income for
simplicity. Thus, his/her budget constraint is

M
Cr=(Wo—Co) > wmBm, (2.1)

m=1

where w,, denotes the proportion of investment in asset m at date 0 such that > w, = 1.
Recall that the net supply of the risk-free asset is zero in economy with a representative investor.
The consumption-investment problem can then be stated as

max U(C()) + 0E [U(CT)] R (2.2)

COa{w'm}

where 6 € (0,1) is some constant denoting a time preference discount factor and U(-) is
the investor’s utility function. Here, we would like to stress that E[-] denotes the expectation
operator under the investor’s subjective probability P. Solving consumption-investment problem
(2.2), the asset pricing formula is obtained as the form

U'(Cy’)

Smo=E {6U’(C’8p)sm’T] , for m=1,...,M, (2.3)
where Cy? denotes the optimal consumption at date ¢. In equilibrium, the return on the optimal
portfolio of all risky assets becomes the return on the market portfolio and its terminal value
is equal to the optimal consumption C7¥ realized by the optimal investment weights {w2}. In
Eq.(2.3),
1( vop
UG (2.4)
U(cq”)
is so-called the pricing kernel. That is, the current price of an arbitrary asset equals the expected
value of its payoff multiplied by the pricing kernel. It is thought that the pricing kernel is an
essential component for all of modern finance.

According to budget constraint (2.1), pricing kernel (2.4) can be regarded as a function of
the gross return on the market portfolio or an asset. For that matter, it is a strictly positive
and decreasing function of the terminal payoff of the market portfolio or an asset if the utility
function is strictly increasing and concave. This is the reason why a number of researchers have
estimated the shapes of empirical pricing kernels projected onto the values of a stock index. In
such empirical studies, the investor’s subjective probability distribution has been identified with
an empirical probability distribution based on historical return data, but probability measure
P in Egs.(2.2) and (2.3) is obviously not so. The objective of this paper is just the subjective
probability distribution.



3 Pricing Kernel Equation

Let M be a strictly positive random variable such that the current price of an arbitrary payout
X paid at time T is written as

E[MX].

That is to say, M is the pricing kernel. Next, define the projection of the pricing kernel onto
the time-T price of an asset as

M(Sr) == E[M|Sr]. (3.1)

The object of an asset for projection (3.1) is usually considered as the market portfolio in theory,
or a stock index in practice, but it can be chosen arbitrarily in our framework. Hereafter, the
projected pricing kernel M (z) is assumed to be twice differentiable with respect to x > 0. Recall
that the existence of a strictly positive pricing kernel is a necessary and sufficient condition that
there are no arbitrage opportunities. The twice differentiability of the projected pricing kernel
means that the representative investor has a three-times differentiable utility function over the
asset price in the context of the preliminary example in Section 2.
Throughout this paper, we frequently use the reciprocal of the projected pricing kernel

g(z) =1/ M(x),

which is named the reciprocal kernel. Of course, inquiry into the reciprocal kernel is equivalent
to that into the projected pricing kernel. However, as will be shown below, it is convenient for
us to treat the reciprocal kernel directly. With the assumptions on the pricing kernel mentioned
above, the reciprocal kernel is also strictly positive and twice differentiable. The next lemma is
trivial, but essential for characterizing the subjective probability distribution.

Lemma 1 The subjective expected value of an arbitrary payoff depending on the terminal asset
price St denoted by H(St) equals the price of the product of the reciprocal kernel g(St) and
H(STt). That is,

E[H(Sr)] = leE l9(Sr)H(S)]. (32)

where E,[ -] denotes the expectation operator under the risk-neutral (forward-neutral) probability
measure Q and Ry is the gross risk-free rate.

Proof of Lemma 1: By equivalence of the asset pricing formulas, the following equality holds
for an arbitrary payoff X paid at time 7.

E[MX] = ];fE* X]. (3.3)

Substituting X = g(St)H(St) into Eq.(3.3) and applying the law of iterated expectations to
the left side of Eq.(3.3) leads to Eq.(3.2). O

The next statement, which is the main theorem of this paper, presents a model-free equa-
tion representing the explicit relation between the subjective and the risk-neutral probability
distributions on St mediated by the reciprocal kernel and its derivatives.



Theorem 1 (Pricing Kernel Equation) The subjective cumulative distribution function of
the asset price at time T denoted by F(x) := P(St < x) is represented as

1 x
F#) = - 0@F.(e) = o/ @)P(T.a) + [ o"(0)P(T K, (34)
where Fy(z) := Q(St < ) denotes the risk-neutral cumulative distribution function of the

asset price at time T and P(T, K) denotes the current price of a put option written on the asset
maturing at time T with strike price K.

Proof of Theorem 1: According to Carr & Madan (1998), g(St) can be expressed as

oo

9(S1) = g(x) + ¢'(x)(ST — =) + /Om 9"(K)(K — St)"dK +/ 9"(K)(Sr — K)"dK, (3.5)

for any x > 0. Multiplying the both side of Eq.(3.5) by 1{g, <.} yields

1(5,<a19(S7) = L{sp<ay9(z) — ¢'(2)(x — Sp)* + /0”” g"(K)(K — Sr)TdK. (3.6)

Right here, taking H(St) = 1{g, <5} in Lemmma 1 and substituting the right side of Eq.(3.6)
into the right side of Eq.(3.3), we obtain Eq.(3.4). O

Theorem 1 has three interpretations: First, it proves the explicit linkage between the subjec-
tive and the risk-neutral cumulative distribution functions. That is, Eq.(3.4) is a model-free
equation to relate the subjective cumulative distribution function to the risk-neutral one and it
is composed of the market prices of put options and an arbitrarily given reciprocal kernel. It is
worthwhile noting that Eq.(3.4) is not about the probability density functions, but about the
cumulative distribution functions. To the best of our knowledge, Eq.(3.4) is the first equation to
give a general formulation of the relation between the subjective and the risk-neutral cumulative
distribution functions. This fact would be a strong point when applying Theorem 1. Consider a
simple consistency check. If the representative investor in the preliminary example of Section 2
is risk-neutral, then g(x) = 1/4. As a result, his/her subjective cumulative distribution function
is coincident with the risk-neutral one due to Ry =1/¢ and ¢'(z) = ¢’ (x) = 0.

Second, Theorem 1 can be interpreted that the subjective cumulative distribution function
is priced by a static option portfolio. Tt is constituted of a long position in g(z) units of cash
digital put options struck at =, whose unit price is F.(z)/Ry, a short position in ¢’(z) units of
plain vanilla put options struck at x, and a long position in ¢”(K)dK units of plain vanilla put
options at all strikes less than x. This portfolio is static, which means that an investor invests
in these positions at initial time and holds them until maturity. In other words, the subjective
probability distribution on the time-T" price of an asset is marketed by options written on it.

Third, Eq.(3.4) can be regarded as the integro-differential equation of the reciprocal kernel,
g(x). Obviously, it is also the integro-differential equation of the pricing kernel itself, M(x).
Therefore, we call it the pricing kernel equation, or the PKE for short. In general, it is difficult
to solve an integro-differential equation explicitly and it may not have a closed-form solution.
In such cases, it is solved numerically by a finite-difference method for instance. Fortunately,
the PKE has the explicit solution under some conditions and it can be easily obtained. The
form of the solution must be familiar with financial economists. The following theorem presents
the solution to PKE (3.4).



Theorem 2 (Solution) If both of the subjective and the risk-neutral cumulative distribution
functions are absolutely continuous, the PKFE has the solution

o) = By ((fj), (3.7)

where ¢(x) and ¢.(x) denote the subjective and the risk-neutral probability density functions of
the asset price at time T, respectively.

Proof of Theorem 2: Differentiating the both sides of PKE (3.4) with respect to z and
substituting

d
%P(T, x) = —Fi(x),

into it, we obtain solution (3.7). O

The reciprocal of the right side of Eq.(3.7) is a standard representation of the pricing kernel in
past literature. However, the condition on Theorem 2 that the subjective and the risk-neutral
probability distributions have the density functions is restrictive. Accordingly, we avoid the use
of the density functions ¢(x) and ¢.(x) as long as possible.

4 Simulation Test

An application of the PKE is to estimate empirical pricing kernels from observed market data.
In past empirical studies, an empirical probability distribution based on historical returns of a
stock index as a proxy for the market portfolio has been identified with the associated subjective
probability distribution. Therefore, an empirical pricing kernel is computed by the reciprocal of
Eq.(3.7) that is the discounted value of the ratio of a risk-neutral density function implied from
observed option prices to an empirical density function. This approach originally attempted by
Jackwerth (2000) is thought of a standard method to estimate the shape of empirical pricing
kernels. Similarly, making use of an empirical cumulative distribution function and implied
risk-neutral cumulative distribution function, we can obtain an empirical pricing kernel by
numerically solving the PKE. This approach is named the pricing kernel equation estimation or
the PKE estimation for short. In comparison with the standard method, conceivable advantages
of the PKE estimation are as follows: First, the PKE estimation needs not assume the absolutely
continuity of the subjective and the risk-neutral cumulative distribution functions. In general,
it is difficult to verify the absolutely continuity. Because of this, a number of researchers
using the standard method have implicitly assumed the absolutely continuity as a premise
of their analysis. Second, the PKE estimation does not use an empirical density function,
but an empirical cumulative distribution function based on historical returns or values of a
stock index. On the other hand, the standard method needs an empirical probability density
function. When applying the kernel density estimation method that is a non-parametric way
to estimate a probability distribution from empirical data, the convergence rate of an empirical
cumulative distribution function to the exact distribution is faster than that of an empirical
density function. More detailed discussion about the kernel density estimation can be found in
Appendix B. In practice, only a limited number of historical values of a stock index has to be
used for such estimation methods. For example, Jackwerth (2000) used only 48 non-overlapping
monthly returns on the S&P 500. Therefore, faster convergence speed is crucial. Third, the
PKE estimation uses an implied risk-neutral cumulative distribution function based on observed
option prices. To obtain it, we need first-order differentiation of an implied volatility function



with respect to strike prices. In the standard method, second-order differentiation of an implied
volatility function is needed to obtain an implied risk-neutral probability density function.
More details are discussed in Appendix C. In finite-difference methods, numerical errors of
second-order differentiation are larger than that of first-order differentiation in general. This
fact is commonly known as the curse of differentiation. Ait-Sahalia & Lo (1998) illustrated
such numerical errors in their figure 2, which depicts that the errors of the implied risk-neutral
density are larger than those of the implied risk-neutral cumulative distribution. Moreover, in
the standard method, one has to divide a vulnerable empirical density function by a vulnerable
implied risk-neutral density function in order to obtain an empirical pricing kernel. In particular,
the division of very small unstable values on the tails of the two density functions is problematic.

In the following, we attempt a simulation test, in which we estimate a given pricing kernel
projected on a stock index by the PKE estimation and the standard method, respectively. And
then, we verify each estimation ability. In the simulation test, the subjective probability distri-
bution is identified with an empirical one in accordance with past empirical studies. Because of
this, the estimated pricing kernel is here called the empirical pricing kernel. Suppose that S is
the time-t value of a stock index as a proxy for the market portfolio and generated by Heston’s
stochastic volatility model (Heston, 1993). That is, under the subjective probability measure
P, the values of the stock index are governed by

dS;

< = pdt + o\/v:dB},  with Sy =1, (4.1)
t

dv, = k(1 — v)dt + ey/v; (detl V1o p2dB§) . with v =1,

where B! and B? are independent standard Brownian motions under P, and y,0,k, ¢ > 0 and
p € [—1,1] are some constants with the parameter restriction 2k > ¢, which is known as the
Feller condition ensuring that the stochastic process v remains strictly positive at any time.
For simplicity, the initial values of S and v are normalized to be ones. The values of the Heston
model parameters are exhibited in Panel A of Table 1.

The first step is that, by Monte Carlo simulation of Eq.(4.1), we generate a series of annual
gross returns on the stock index postulated as observed sample data. Notice that the annual
gross returns equal the associated values of the stock index over the next year in the simulation
test owing to the normalization. As the second step, we assign the risk-neutral probability Q
by the Radon-Nikodym derivative

dQ
dP

_ ST+ St Ay (4.2)
sy E[S2*+ BSE+1] '

with some constants «, 3, and . The values of these parameter are listed in Panel B of Table
1. The exact projected pricing kernel that is the target for our estimation is written as

1 d@ —r(T) $2a+,8$a+'}/
. 4.
M@ =g ,=¢ B[S+ 58 4] (43)

where r(T') := log Ry is the one-year yield to maturity in market equilibrium. The closed form
expressions of M(z) and r(T") can be found in Appendix A. Note that the pricing kernel defined
in Eq.(4.3) depicts U-shaped curve because it is a quadratic function of 2®. This is consistent
with some empirical observations. For example, Jackwerth (2000), Bakshi et al. (2010), and
Christoffersen et al. (2013) reported that U-shaped empirical pricing kernels have been observed
in stock index markets. However, this is inconsistent with the marginal utility form in Eq.(2.4)
of the pricing kernel, which is monotonically decreasing in x. Next, we compute prices of plain
vanilla call options written on the stock index by the option pricing formula given in Appendix



A.2. The option maturity is one-year and strike price ranges from 0.8 to 1.4. As shown in
Figure 1, we then compute the Black-Scholes implied volatilities from the call option prices
obtained above.

In the simulation test, we presume that observers only know sample values of the stock
index, the one-year yield to maturity, and implied volatilities of the stock index. They estimate
pricing kernel (4.3) by the PKE estimation or the standard method. In the PKE estimation,
we use kernel density estimation (B.3) in Appendix B for empirical cumulative distribution
functions and formula (C.1) in Appendix C for risk-neutral one. Then, we apply the point-
wisely quadratic approximation described in Appendix D to solve the PKE numerically. In the
standard method, we use kernel density estimation (B.1) in Appendix B for empirical density
functions and formula (C.2) in Appendix C for risk-neutral one.

Table 1: Model parameters

Panel A: Heston model parameters
I o k c p
0.060 0.150 0.400 0.800 -0.300

Panel B: Pricing kernel parameters

! B Y
1.100 -2.444 1.693

Figure 2 depicts empirical pricing kernels and the exact pricing kernel by Eq.(4.3). The
left panels of Figure 2 show empirical pricing kernels estimated by the PKE estimation with
different sizes of sample returns, while the right panels show them estimated by the standard
method. The dotted lines denote empirical pricing kernels and the solid lines denote the exact
pricing kernel. There are ten dotted lines of empirical pricing kernels on each panel, which are
estimated from same size, but independent sample sets. On the panels with 100 sample size,
empirical pricing kernels are oscillating nevertheless the exact pricing kernel is U-shaped. This
concludes that empirical pricing kernels with less than 100 sample returns cannot converge to
exact one without depending on a method. Some lines of empirical pricing kernels in the panels
look tilde-shape like empirical observations reported in past literature. In fact, it is not until
10,000 sample size that empirical pricing kernels approach to exact one. However, if we want
to use 10,000 non-overlapping monthly returns in practice, we have to collect historical data
for over 833 years!

Disappointedly, Figure 2 indicates that the PKE estimation is not superior to the standard
method. In the following, we will look into the cause of the non-superiority. The left panels
of Figure 3 depict empirical cumulative distribution functions estimated by the kernel density
estimation with the exact one computed by formula (A.5). Recall that the empirical cumulative
distribution functions are used for the PKE estimation. The right panels of Figure 3 exhibit
empirical probability density functions estimated by the kernel density estimation with the exact
one computed by Lévy’s inversion formula. The empirical probability density functions are used
for the standard method. In the same manner as Figure 2, there are ten dotted lines denoting
empirical probability distributions and one solid line denoting the exact probability distribution
on each panel. Following to the theoretical result discussed in Appendix B, Figure 3 illustrates
that empirical cumulative distribution functions converge to exact one faster than empirical
density functions. However, empirical pricing kernels estimated by the PKE estimation seem
not to receive any benefit from the faster convergence rate.



Next, we examine accuracy of implied risk-neutral probability distributions. Figure 4 plots
the implied risk-neutral cumulative distribution function plotted by circles and the implied
risk-neutral probability density function plotted by asterisks, which are computed by formulas
(C.1) and (C.2), respectively. These are estimated from the implied volatility curve in Figure
1. Although the implied risk-neutral cumulative distribution function used for the PKE esti-
mation is perfectly coincident with exact one denoted by the solid line, the implied risk-neutral
probability density function used for the standard method slightly deviates from exact one de-
noted by the dotted line. In fact, the case of 100 million sample in Figure 5 illustrates that
the empirical pricing kernel made by the standard method denoted by the dotted line deviates
from the exact pricing kernel denoted by the solid line parallel to the deviation of the implied
risk-neutral probability density function. In contrast, the empirical pricing kernel estimated by
the PKE estimation denoted by the dash line perfectly fits exact one. Consequently, the PKE
estimation is advantageous in terms of the curse of differentiation.

In conclusion, the practical advantage of the PKE estimation becomes apparent only if an
incalculable number of sample returns are available. However, as an important implication of
the simulation test, it can be said that it is essentially difficult to estimate empirical pricing
kernels in any manner as long as the kernel density estimation with a limited number of sample
data are used for. Shefrin (2008) pointed out as follows: The subjective density function of
a representative investor can be represented as a wealth-weighted convex combination of the
individual investors’ subjective density functions. If the individual investors have heterogeneous
beliefs and even if each of their subjective density functions portrays a pure bell curve, the
shape of the representative investor’s subjective density function may be distorted like the
empirical density functions on the first right panel of Figure 3. Shefrin (2008) concluded that
the distorted subjective density function generates an oscillating pricing kernel. His insight
holds true for any pricing kernel estimation methods with the kernel density estimation. The
use of the kernel estimation method implicitly assumes heterogeneous beliefs. That is to say, the
number of sample returns in the kernel estimation method effectively corresponds the number
of heterogeneous investors, because an estimated density function is composed of an equal-
weighted convex combination of the values of the kernel density associated with each sample
returns. Thereby, a limited number of sample returns could induce a distorted empirical density
function nevertheless the exact density function portrays a pure bell curve. Such an estimation
result generates an oscillating empirical pricing kernel. See also Appendix B.

5 Subjective Statistics Representation

Unfortunately, the previous section reveals that estimating empirical pricing kernels by the PKE
estimation may not be necessarily advantageous. However, we attempt another application that
we derive subjective probability distributions from the PKE with a given suitable reciprocal
kernel. As will be shown, subjective fundamental statistics can also be measured in a similar
manner. For modeling a suitable reciprocal kernel, suppose that it is given by

o) = Ry | = Ryt 6.1

where go(x) is a twice differentiable and strictly positive function of > 0. It would be conve-
nient to directly model the reciprocal kernel rather than the pricing kernel itself. For example,
to treat the pricing kernel defined in Eq.(4.3), we have to know the subjective probability on
the asset price in advance for computing the denominator on the right side of Eq.(4.3). In
contrast, when treating reciprocal kernel (5.1), we do not need to know any information about

10



the subjective probability. Instead, we can use option prices or implied volatilities observed in
markets to determine reciprocal kernel (5.1), because it is represented as

9(x) = Ggo(),
where G is the reciprocal of the price of payoff go(S7). That is, the constant G is given by

1 1 °

&= 7B () = g + [ PR + [ RO K

where k := RSy denotes the forward price of the asset maturing at time T and C(T', K') denotes
the current price of a call option maturing at time 7" with strike price K. Therefore, reciprocal
kernel (5.1) is model-free for both the subjective and the risk-neutral probability distributions
on the asset price. The functional form of go(z) can be chosen from a wide variety of functions.

For the rest of this section, we presume that the reciprocal kernel g(x) is given in any form.
Section 5.2 provides a general form of go(z) connecting with absolute risk aversion. In the next
section, we will develop the explicit representation of reciprocal kernel (5.1) consistent with
hyperbolic absolute risk aversion (HARA for short). Some formulas for measuring subjective
statistics are provided in Sections 5.1 and 5.3. All the results below can be regarded as corollaries
of Theorem 1.

5.1 Subjective Moments
The next proposition is a simple application of Lemma 1, but a convenient tool for measuring

subjective fundamental statistics implied from observed option prices.

Proposition 1 (Subjective Moment Formula) Let f(z) be a twice differentiable function
with respect to x > 0. Then, we have

f(K)g(x)
Ry

oo

B [f(51)] = + [ 09y PR + [ (FE)9(K) CT K. (52)
0 K

Proof of Proposition 1: Applying Eq.(3.5) to the product of the functions f(Sr)g(St)

instead of g(St) with 2 = k, we obtain Eq.(5.2) by Lemma 1. O

To obtain the subjective n-th moment of the asset price at time T, we set f(x) = z™ in
Proposition 1. For example, the subjective expected value of the asset price is written as

E[Sr] = Sog(x) + /0 " (29/(K) + Ky (K)) P(T, K)dK
+ / 20 (K) + Kg"(K)) C(T, K)dK. (5.3)

Similarly to the subjective cumulative distribution function, subjective expected value (5.3) is
priced by a static portfolio. The static portfolio is composed of a long position in kg(k) units of
the risk-free asset, a long position in (2¢'(K) + K¢’ (K))dK units of put options at all strikes
less than &, and a long position in (2¢’(K)+ K¢ (K))dK units of call options at all strikes larger
than x. The subjective expected value in Eq.(5.3) is affected by not only the reciprocal pricing
itself, but also its slope and curvature. When the representative investor in the preliminary
example of Section 2 is risk-neutral, the right side of Eq.(5.3) equals the forward price of the
asset as expected.

11



5.2 Absolute Risk Aversion

Suppose that the pricing kernel is represented as the marginal utility form in Eq.(2.4) in Section
2. In this case, the absolute risk aversion of the representative investor can be written as

/
ARA(z) = 2. (5.4)
g(x)
Consequently, the next proposition, which is immediately derived from Eq.(5.4), shows a general
formula to obtain the functional form of go(z) in Eq.(5.1) consistent with arbitrary absolute
risk aversion.

Proposition 2 (Reciprocal Kernel) Suppose that the pricing kernel is represented as the
marginal utility form in Eq.(2.4). Then, the function go(z) in Eq.(5.1) has the form

go(x) = exp { / xARA(y)dy} . (5.5)

Proof of Proposition 2: Eq.(5.4) leads to the homogeneous linear ordinary differential equa-
tion of the first order for go(x)

g0(x) = ARA(x)go(x).

The general solution to the above equation is given by

go(x) = Cexp {/QCARA(y)dy} : (5.6)

where C' is some constant. Because of Eq.(5.1), we can put C' = 1 without loss of generality. [J

Note that the projected pricing kernel M (z) can be written as the reciprocal of general solution
(5.6). However, we have to know the subjective probability distribution in advance to determine
the constant C'. In contrast, the static portfolio representation of the constant G is crucial for
the reciprocal kernel in Eq.(5.1).

As a simple example of Proposition 2, by putting the absolute risk aversion constant, the
functional form of the reciprocal kernel in Eq.(5.1) is obtained consistent with an exponential
utility function. Proposition 2 also indicates that, under the assumption that the pricing kernel
is given by the marginal utility form in Eq.(2.4), we can rewrite the PKE and the subjective
moment formula in Proposition 1 in terms of the absolute risk aversion instead of the reciprocal
kernel.

If the subjective and the risk-neutral cumulative distribution functions are absolutely con-
tinuous and their density functions are differentiable, then absolute risk aversion (5.4) can be
rewritten as

o) o)
o2)  6.(a)

Expression (5.7) originally introduced by Leland (1980) has often been used in past literature.
However, it is not our objective because there are not only the probability density functions,
but also their derivatives in expression (5.7). As shown in Section 4, both the subjective and
the risk-neutral density functions are not robust in empirical estimations. Thus, the numerical
differentiation of such density functions would be unstable in nature. As a result, there is little
hope of obtaining accurate values of Eq.(5.7).

ARA(z) = . (5.7)

12



5.3 Kullback-Leibler Divergence

The Kullback-Leibler divergence also known as the relative entropy is a statistic to measure dif-
ference between two probability distributions. The definition of the Kullback-Leibler divergence
between the risk-neutral and the subjective probability distributions on St is

dP

KL@|?) = - [1ox (5

It is always non-negative and it takes zero if and only if the two probability distributions are

identical. Recall that the Kullback-Leibler divergence is an asymmetric measure and thus does
not qualify as a distance.

The following proposition demonstrates that the Kullback-Leibler divergence between the

risk-neutral and the subjective probability distributions is priced by a static portfolio including

plain vanilla options.

ST) dQ. (5.8)

Proposition 3 (Kullback-Leibler Divergence) Suppose that the pricing kernel is repre-
sented as the marginal utility form in FEq.(2.4). Then, the Kullback-Leibler divergence between
the risk-neutral and the subjective probability distributions is given by

KL(Q|P) = log Ry —logg(k)

— Ry { / " ARA(K)P(T, K)dK + /

0 K

o0

ARA/(K)C(T,K)dK}. (5.9)

Proof of Proposition 3: By the definition of Kullback-Leibler divergence (5.8), we have

KL(Q|P) = E. [mg (g;f;))] ~ log Ry — E. [log g(Sr)]

Applying Eq.(3.5) to log g(St) instead of g(St) with = k and noting from Eq.(5.4) that

(logg(z))" = ARA(x),

yield
RLE* [log g(ST)] = logRﬂ +/ ARA'(K)P(T, K)dK +/ ARA'(K)C(T, K)dK.
f f 0 K

O

Amounts of the options in the static portfolio pricing the Kullback-Leibler divergence depend
on the slope of the absolute risk aversion. When the representative investor is risk-neutral, the
slope of his/her absolute risk aversion is zero and g(x) = Ry for any = > 0. In this case, the
Kullback-Leibler divergence is zero, that is, the risk-neutral probability distribution is identical
to the subjective one.

6 Numerical Example
This section presents a numerical example in which given an implied volatility curve with one-

year maturity and one-year interest rate, we estimate subjective probabilities and subjective
fundamental statistics about the one year later value of the market portfolio.

13



Suppose that S; is the time-t value of the market portfolio and go(z) in Eq.(5.1) is given by

golz) = ( or +6>M, (6.1)

1—7

where «, 3, and ~ are some constants. From relation (5.4), the risk tolerance, which is defined
as the reciprocal of the absolute risk aversion, has the form
g(x) z B

ST a (6.2)

RT(x) =

Therefore, plugging go(x) in Eq.(6.1) into reciprocal kernel (5.1) means that the representative
investor has a HARA utility over the market portfolio. That is, his/her utility function is given

by
1=y ax K
U@)v(1—7+5>'

Recall that if v < 1 and o = 1 — ~, the investor has a shifted power utility function. When
a = 0 and v = 0, the investor has a shifted log utility function. The relative risk aversion is
increasing in x if § > 0 and decreasing in x if § < 0. Putting 8 = 0 means constant relative
risk aversion. When v = 1, the representative investor is risk-neutral.

The one-year implied volatility curve of the market portfolio that is regarded as available
market information is depicted in Figure 6. Another market information given there is one-year
risk-free interest rate, whose value is set as r := log Ry = 2.5%. The implied volatility curve is
generated by a risk-neutral Heston’s stochastic volatility model, which is described by Eq.(4.1)
with drift term r instead of p because of risk-neutral modeling. The values of the Heston model
parameters are listed in Table 2.

Table 2: Heston model parameters
r o k c P
0.025 0.150 0.400 0.800 -0.400

Table 3 exhibits the subjective probabilities derived from the PKE associated with the
implied volatility curve in Figure 6 and the reciprocal kernel in Eq.(6.1). We set the values of
the utility parametersas a = 1—+, 8 =-0.2,0,0r 0.2, and vy =1, 0, -1, ..., or -4. Risk tolerance
(6.2) indicates that the more negative parameter ~ is, the more risk averse is the investor. The
first row of Table 3 displays the risk-neutral probabilities (7 = 0) as a benchmark. As a whole,
with increasing risk aversion, the investor underestimates his/her subjective probabilities on
the event that the one-year later value of the market portfolio is lower than a certain value.

We first make a comment on the constant relative risk aversion case (8 = 0). The subjective
probability that the value of the market portfolio falls below 0.9 is 15.9% when the investor
has a log utility function (y = 0), while it is only 5.5% when v = -4 that means the investor
has a power utility function with constant relative risk aversion of 5. Next, we focus on the
decreasing relative risk aversion case (8 = -0.2). The subjective probabilities there are more
underestimated than the constant relative aversion case. Conversely, the subjective probabilities
in the increasing relative risk aversion case (8 = 0.2) are more overestimated than the constant
relative risk aversion case.

Next, we investigate subjective fundamental statistics of the one-year later log-return on the
market portfolio. We begin by computing the subjective n-th central moment of the log-return

14



Table 3: Subjective probabilities

B ~y 5,<09 S5, <10 S <11 S <12 S <13
- 1 0.200 0.432 0.696 0.881 0.964
0.2 0 0.149 0.360 0.632 0.844 0.949
1 0.109 0.296 0.566 0.802 0.929
2 0.078 0.238 0.500 0.754 0.905
-3 0.055 0.189 0.435 0.701 0.875
4 0.038 0.147 0.373 0.644 0.840
0 0 0.159 0.374 0.644 0.852 0.952
1 0.125 0.321 0.591 0.818 0.937
2 0.096 0.271 0.537 0.780 0.918
3 0.073 0.227 0.483 0.739 0.896
4 0.055 0.187 0.430 0.694 0.870
0.2 0 0.166 0.384 0.653 0.857 0.954
1 0.136 0.338 0.608 0.829 0.941
2 0.110 0.295 0.563 0.798 0.927
3 0.088 0.255 0.517 0.764 0.909
4 0.070 0.219 0.471 0.727 0.889

to apply Proposition 1 to the function

f(‘T) = [log'r - m]na

where m is the first moment if n > 2 and zero if n = 1. Based on up to the fourth central mo-
ment, we then compute subjective perspectives of mean (Mean), standard deviation (StdDev),
skewness (Skew), and excess kurtosis (Kurt) of the log-return. In addition, we also measure the
Kullback-Leibler divergence (KLD) between the risk-neutral and the subjective probabilities on
the market portfolio value by formula (5.9).

Table 4 exhibits the subjective fundamental statistics and the Kullback-Leibler divergence.
The risk-neutral distribution (7 = 1) has the mean of 1.4%", the standard deviation of 15.2%,
strongly negative skewness (-0.445), and larger excess kurtosis (0.624). These results are re-
garded as benchmark statistics. We first discuss the constant relative risk aversion case (8 = 0).
As expected, the investor with higher risk aversion has his/her perspective of the log-return
distribution with larger mean and smaller standard deviation. With increasing risk aversion,
the subjective negative skewness and the subjective excess kurtosis are gradually mitigated. As
a result, the more risk averse is, the larger is the Kullback-Leibler divergence. When v = -2,
which means that the investor has a power utility function over the market portfolio with con-
stant relative risk aversion of 3, the subjective mean is 7.7% that seems to be a plausible level
in comparison with historical average of log-returns on the S&P 500. Next, paying attention to
the decreasing relative risk aversion case (8 = -0.2), we notice that the subjective fundamental
statistics are more sensitive to parameter v than the constant relative risk aversion case. Con-
versely, these statistics are less sensitive in the case of the increasing relative risk aversion (5 =
0.2).

INote that the risk-neutral mean of the log-return is not r = 0.025, but r — ¢2/2 = 0.01375 more precisely.
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7 Conclusion

This paper presents the pricing kernel equation and its applications. It is demonstrated that the
PKE does not only offer a general formula for the theoretical relation between the subjective
and the risk-neutral cumulative distribution functions, but also it could be a versatile tool for
various applications. The applications described in this paper are just a part of them. Other
conceivable applications are as follows.

1. To estimate the probability weighting function: The probability weighting function
is an aspect of the cumulative prospect theory introduced by Tversky & Kahneman (1992)
and defined as distortion of subjective probabilities to objective probabilities. Compering
the subjective probability distribution implied by the PKE with an empirical distribution
regarded as the objective probability distribution, one might estimate the probability
weighting function from market data.

2. To construct financial risk measurement: Generally speaking, standard risk mea-
surement such as Value at Risk is a lagging indicator due to the use of historical data.
The subjective probability distribution estimated by the PKE from real time option prices
could be used for financial risk measurement as a forward-looking indicator.

3. To develop new trading strategies: We suggest new trading strategies dealing with
the subjective probability distribution. For example, the PKE makes it possible to ro-
bustly replicate an option depending on a subjective probability like a digital put option.
As shown in Table 3, its price that equals the subjective probability is cheaper than the
price of the digital put option. These payoffs are the same when they are in the money,
but different when they are out of the money.

4. To produce new indices: Like the VIX, the subjective mean computed in Section 6
might become a new index measuring market sentiment as well as the subjective stan-
dard deviation, skewness, and kurtosis. These indices represent bullish, bearish, fear, or
conscious of rare events for the market.

The reciprocal kernel itself is also thought of an interesting concept in spite of the very
simple definition. The reciprocal kernel makes it possible to describe the pricing kernel more
flexibly in a tractable manner. In this paper, we apply it to specify the pricing kernel consistent
with the hyperbolic absolute risk aversion utility. In future research, we would like to use the
reciprocal kernel for modeling non-standard pricing kernels including the tilde-shaped pricing
kernel generated by the ambiguity aversion model of Klibanoff et al. (2005).

Finally, we acknowledge that the PKE is essentially for single-period asset pricing models and
it does not describe any intertemporal characteristics of the relation between the subjective and
the risk-neutral probability distributions. A natural direction for future research is to extend
the PKE to multi-period models. Although such an extension is necessary for addressing time-
inseparable utility functions such as the habit formation by Campbell & Cochrane (1999) and
the recursive utility by Epstein & Zin (1989), it might be a challenging task.

A Heston Model Analysis

The following lemma is useful to analyze Heston model (4.1).
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Table 4: Subjective fundamental statistics

B vy Mean StdDev Skew Kurt KLD
— 1 0.014 0.152 -0.445 0.624 0.000
-0.2 0 0.041 0.145 -0.371 0.589 0.018
-1 0.067 0.140 -0.293 0.544 0.069

-2 0.091 0.137 -0.216 0.501 0.150

-3 0.113 0.134 -0.140 0.461 0.260

-4 0.135 0.133 -0.068 0.423 0.397

0 0 0.036 0.147 -0.392 0.612 0.011
-1 0.057 0.143 -0.334 0.586 0.044

-2 0.077 0.140 -0.273 0.556 0.097

-3 0.096 0.138 -0.210 0.523 0.170

-4 0.115 0.136 -0.147 0.490 0.262

0.2 0 0.032 0.148 -0.404 0.621 0.008
-1 0.050 0.145 -0.358 0.607 0.031

-2 0.067 0.142 -0.309 0.586 0.068

-3 0.084 0.140 -0.257 0.561 0.120

-4 0.101 0.138 -0.203 0.534 0.186

Figure 1: Implied volatility for Section 4
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Figure 6: Implied volatility for Section 6
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Lemma 2 Define

¢T,z) =E

1 T T
exp { (uT — 502/ vedt + a/ \/FtdBtl> x}] .
0 0

Then, it is represented as E(T,x) = exp{xuT + A1 (T, x) + Ao(T, x)}, where

2 M(T
02 /\1(T '

~—

A (T, 2) := —i—flog A (T), and  Ao(T,z) :=

~

Here, putting ky := zocp — k and ko := $02c*(2? — x), if k¥ — 2ks # 0,

)\1(T) — %670_71 _ ;77—7676+T’ and )\Q(T) = % (efc_T _ 676+T)

where ¢y := —1ky £, n = 1\/k? — 2k,. Otheruwise,

)

1 1 1
M(T) = (1 - 2I<:1T> e T and A(T) := §kle%’“T — Sh(T).

Proof of Lemma 2: Define the new probability measure P(z) by the Radon-Nikodym deriva-

tive
P T 1 T
dP(z) := exp xa/ \/vtdBtl — 7$20_2/ vedt p .
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Then, we have

§(T,x)

dP(z) 1 T 1 T

I”TE -2 2 a2

e [dIP’ exp{Za:o'/O vedt 2xa /0 vpdt
T

_ em#TELE [QXP{Z/ Utdt}] , (Al)
0

where E,[-] is the expectation operator under P(z) and z := 0?(2* — ). Following to the Gir-

sanov theorem, Bf := B} —zo fot /Uydu is a standard Brownian motion under P(z). Therefore,
the variance process of the Heston model under P(z) is governed by

dvy = (k + [xocep — EJvg)dt + ¢y/vy (def +4/1- deBf) . (A.2)

Because variance process (A.2) is an affine process, we can apply Proposition 2 in Duffie,
et al (2000) to Eq.(A.1). As a result, we have &(T,z) = exp{A1(T,z) + Ax(T,x)}, where
A (T, z) := ar(0) and A2(T,z) := Br(0) such that the functions ar(t) and Sr(t) satisfy the
system of the ODEs

d 1

—Br(t) = —z — k1 fr(t) — =c2Br(t)?

dtﬂT( ) =~z = kifr(t) — 5 Br(t)7,

d

—ar(t) = —kBr(t

Sar(t) = —kpr(t)

with the boundary conditions ar(T) = 0 and Sr(T) = 0. The derivation of the solution to
the system of the ODEs above can be found in Appendix of Umezawa & Yamazaki (2014) for
instance. 0

Making use of the asset pricing formula Sy = E[M.St] with the normalized initial value Sy =
1, substituting pricing kernel (4.3) into it, and applying Lemma 2, we obtain the representation
of the yield to maturity

§(T2a+1)+ BE(T, 0+ 1) +194(T' 1)

r(T) =lo A3

(1) =tog §(T,20) + BE(T, ) +4 (49)
Analogously, the projected pricing kernel is given by
2 (e}

M(z) = v+ fat (A.4)

§T,2a+1) + BE(T,a + 1) +1¢(T, 1)

Projected pricing kernel (A.4) is a quadratic function of z®. To generate a strictly positive U-
shaped pricing kernel, we restrict the parameters such that o > 0, 8 = —2z%, , and v > 229 |
where M(x) takes the minimum value at the point x,i,. According to the restriction, we set
ZTmin = 1.2, a = 1.1, v = 22¢_+ 0.2 in Panel B of Table 1.

min

A.1 Subjective Cumulative Distribution Function

The characteristic function of the log-price of the asset under the subjective probability measure
P is defined as

©(0) :=E [exp {if log ST}], for 6 €D,
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where D denotes a subset of C such that the function ¢(0) is well defined on D. Making use of
Lemma 2, we have

p(0) = (T, 10).

Applying Gil-Pelaez’s inversion formula, the subjective cumulative distribution function of
St can be represented as

F(z) = % - 711_/0OO %jm {7 0(0)} do. (A.5)

A.2 Option Pricing

The risk-neutral characteristic function of the log-price of the asset defined as
s (0) := E, [exp {i0log ST}], for 6 €D, CC,

is given by

p«(0) = E %exp {i0log St}

_ (T 20 +40) + BE(T, a + i) ++§(T, i0) (A.6)
§(T,2a) + BE(T, o) + ’ '
where D, is a subset of C such that the function ¢, () is well defined on D,. In the second
equality of Eq.(A.6), we substitute Eq.(4.2) into it and use Lemma 2.
The price of a call option written on the asset with maturity 7" and strike price K denoted
by C(T, K) can be calculated by

C(T,K) = E. L;f (St — K)+] — (D {Sl[d(log K)+ (e“T) - K)+} , (A7)

where F((2) := &= [T e77((0)dh is the inverse Fourier transform of the complex-valued

function ((#) defined by

(p*(e _ Z) _ e(i9+1)r(T)

<) := i0(i0 + 1)

The derivation of formula (A.7) can be found in Appendix A.1 of Yamazaki (2018) for example.
The implied volatility curve shown in Figure 1 is obtained by the standard method computing
the implied volatilities from call option prices given by formula (A.7).

B Empirical Probability Estimation
Let X1, X5,..., X, be independent samples drawn from the probability distribution with an

unknown density function ¢(x) that is twice differentiable. The kernel density estimator of the
density function is defined by

Ba) = nlhzfc (F55). (B.1)
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where h > 0 is a bandwidth and K(-) is a kernel function satisfying some conditions to ensure
that ¢(x) is a probability density function. MISE (mean integrated squared error) of the kernel
density estimator ¢(z) can be written as

MISE [(ﬁ(aj)} = /E [(é(x) - (b(x))z] dx = a1h* + ;% +o(h*+ (nh)™"), (B.2)

where a1 and as are some constants. To minimize MISE (B.2), we should chose the bandwidth
h = asn~/5, where a3 is some positive constant. Therefore, the convergence rate of MISE (B.2)
with the optimal bandwidth is n~%/%. If the standard normal density function is chosen as the
kernel function, the optimal bandwidth is h ~ 1.066n~'/%, where & is the standard deviation
of the samples.

On the other hand, the estimator of the cumulative distribution function F(x) is defined by

=/;¢3(y)d 222(

where G(x f K(y)dy. The MISE of the estimator F'(x) can be written as

MISE [F(x)] = /E[(F(x)—F(:c))z} dz

= bon '+ bihn~ + boh* +o (BT + hnTY), (B.4)

) : (B.3)

where by, b1, and by are some constants. To minimize MISE (B.4), we should chose the band-
width h = bsn~'/3, where bs is some positive constant. Therefore, the convergence rate of MISE
(B.4) with the optimal bandwidth is n~!. It is worthwhile noting that the convergence speed
of estimator (B.3) is faster than that of kernel density estimator (B.1). If the standard normal
density function is chosen as the kernel function, the optimal bandwidth is h ~ 1.596n~1/3.

The standard method including Jackwerth (2000) uses kernel density estimator (B.1) with
the standard normal density function as the kernel function to estimate empirical pricing ker-
nels. On the other hand, we use cumulative distribution estimator (B.3) to estimate empirical
cumulative distribution functions for the PKE estimation.

C Implied Risk-Neutral Probability

Given an implied volatility function v(K) of strike price K, we can estimate the risk-neutral
cumulative distribution function of the asset price. It is the first order derivative of the Black-
Scholes put option price with respect to strike price after multiplying by the gross rate of
the risk-free asset. That is, the implied risk-neutral cumulative distribution function ﬁ'*(x) is
obtained by

d

Ry P(T,K) = WU(—da) + V (K)WTK(dy), (C.1)

F.(K) =

where ¥(z) and ¢ (x) are the cumulative distribution function and the density function of the
standard normal distribution, respectively. Here, we define

K2
dy = log&+r(T)+ v(K) T},

vl
dy :=dy — v(K)VT.
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The risk-neutral density function can be calculated by differentiating twice the Black-Scholes
put (or call) option price with respect to strike price after multiplying by the gross rate of the
risk-free asset. That is, the implied risk-neutral density function ¢.(z) is obtained by

2

¢.(K) = Rf%P(T, K) = Imf {1 + 2KV’(K)ﬁd1} (C.2)

+ SoVTe(dy) {;/’(K) + (V;((Il?))dldz} .

The standard method uses implied density function (C.2) to estimate empirical pricing kernels,
while the PKE estimation uses implied cumulative distribution function (C.1).

D PKE Estimation

Suppose that an empirical cumulative distribution function a (), an implied risk-neutral cu-
mulative distribution function F*(:c), and put option prices P(T, K) are given. To estimate
the shape of the reciprocal kernel g(x), we determine its values by a point-wisely quadratic
approximation. Let {x,, },=1,.. n be estimation points of g(x, ). The value of g(z,,) is assumed
to be approximated by g, (z,), where g, (v) = a,2? + b,x + ¢, is a quadratic polynomial with
coefficients ay,, b,, and ¢, for n = 1,..., N. To determine the three coefficients, we match the
polynomial g, (x) with PKE (3.4) at three points including the estimation point z,. That is,

.
~ 1 . Ty
Fa) = o on@)Fe) = dhe) P + [ i) PT I)a,

fmmzé%mﬁwm—w%wmmﬂﬁuﬂmmeWc

Fla,) = legn(xn)ﬁ*(xn) = (@, )P(T, ) + /Oxn gn(K)P(T, K)dK,

where 2t := 2, + A and z, := x,, — A with some positive constant A. Here, F'(z) and F,(x)
denote the empirical and the implied risk-neutral cumulative distribution functions, respectively.
This system of the equations can be rewritten as the matrix form

F(zy) A(zl) B(zy) C(zy) an
F(zn) | = | A(zn) B(zn) C(zn) bn |, (D.1)
F(z) A(z,) B(x,) Clz,) Cn
where
Alx) = ];f 2F.(z) — 22P(T,z) + 2/01 P(T,K)dK,
B(z) = };xm (z) — P(T,z),
C(x)zéfﬁ*(x)

Solving the system of the equations in matrix (D.1), we obtain the coefficients a,,, b,, and c,.
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